Abstract

An integrated-optics Mach-Zehnder interferometric modulator in LiNbO3 has been designed and fabricated. The electrodes are 3-μm thick asymmetric coplanar striplines formed by ion-beam etching techniques. The push–pull design and the r33 electrooptic coefficient of LiNbO3 are utilized for efficient modulation. Complete modulation is achieved with 6.5 V for the 6-mm long device at 0.83-μm wavelength and with 18 V at 1.3-μm wavelength. The 3-dB bandwidth of the modulator is 3.5 GHz, being limited by the excessive resistive loss of the stripline electrodes. Since this particular modulator retains a dc electrical bias, it performs either as an intensity modulator by applying a π/2 dc phase bias to achieve maximum linearity or as a frequency shifter by changing the dc bias point to π. In addition, we analyzed the principle of operation of the Y junction by observing both the in-phase and the out-of-phase modes of a multimode waveguide modulator.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sueta, M. Izutsu, J. Opt. Commun. 3, 52 (1982).
  2. O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
    [CrossRef]
  3. K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
    [CrossRef]
  4. J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
    [CrossRef]
  5. C. M. Gee, C. Mohr, G. D. Thurmond, to be published.
  6. C. M. Gee, G. D. Thurmond, in Proceedings, International Conference on Lasers ’82, New Orleans (The Society of Optical and Quantum Electronics, Dec.1982).
  7. M. Izutsu, Y. Nakai, T. Sueta, Opt. Lett. 7, 136 (1982).
    [CrossRef] [PubMed]
  8. F. Auracher, R. Keil, Appl. Phys. Lett. 36, 626 (1980).
    [CrossRef]

1982 (2)

T. Sueta, M. Izutsu, J. Opt. Commun. 3, 52 (1982).

M. Izutsu, Y. Nakai, T. Sueta, Opt. Lett. 7, 136 (1982).
[CrossRef] [PubMed]

1981 (2)

O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
[CrossRef]

J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

1980 (2)

F. Auracher, R. Keil, Appl. Phys. Lett. 36, 626 (1980).
[CrossRef]

K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
[CrossRef]

Auracher, F.

F. Auracher, R. Keil, Appl. Phys. Lett. 36, 626 (1980).
[CrossRef]

Gee, C. M.

C. M. Gee, G. D. Thurmond, in Proceedings, International Conference on Lasers ’82, New Orleans (The Society of Optical and Quantum Electronics, Dec.1982).

C. M. Gee, C. Mohr, G. D. Thurmond, to be published.

Izutsu, M.

M. Izutsu, Y. Nakai, T. Sueta, Opt. Lett. 7, 136 (1982).
[CrossRef] [PubMed]

T. Sueta, M. Izutsu, J. Opt. Commun. 3, 52 (1982).

Jackel, J. L.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Keil, R.

F. Auracher, R. Keil, Appl. Phys. Lett. 36, 626 (1980).
[CrossRef]

Kubota, K.

K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
[CrossRef]

Lyman, S. P.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Mikami, O.

K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
[CrossRef]

Mohr, C.

O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
[CrossRef]

C. M. Gee, C. Mohr, G. D. Thurmond, to be published.

Nakai, Y.

Nelson, C.

O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
[CrossRef]

Noda, J.

K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
[CrossRef]

Ramaswamy, V.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Ramer, O. G.

O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
[CrossRef]

Sueta, T.

T. Sueta, M. Izutsu, J. Opt. Commun. 3, 52 (1982).

M. Izutsu, Y. Nakai, T. Sueta, Opt. Lett. 7, 136 (1982).
[CrossRef] [PubMed]

Thurmond, G. D.

C. M. Gee, C. Mohr, G. D. Thurmond, to be published.

C. M. Gee, G. D. Thurmond, in Proceedings, International Conference on Lasers ’82, New Orleans (The Society of Optical and Quantum Electronics, Dec.1982).

Appl. Phys. Lett. (2)

J. L. Jackel, V. Ramaswamy, S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

F. Auracher, R. Keil, Appl. Phys. Lett. 36, 626 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

O. G. Ramer, C. Nelson, C. Mohr, IEEE J. Quantum Electron. QE-17, 970 (1981).
[CrossRef]

K. Kubota, J. Noda, O. Mikami, IEEE J. Quantum Electron. QE-16, 754 (1980).
[CrossRef]

J. Opt. Commun. (1)

T. Sueta, M. Izutsu, J. Opt. Commun. 3, 52 (1982).

Opt. Lett. (1)

Other (2)

C. M. Gee, C. Mohr, G. D. Thurmond, to be published.

C. M. Gee, G. D. Thurmond, in Proceedings, International Conference on Lasers ’82, New Orleans (The Society of Optical and Quantum Electronics, Dec.1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of a Mach-Zehnder interferometric traveling-wave modulator with built-in dc optical bias.

Fig. 2
Fig. 2

Insertion loss measurement of the modulator’s electrode. Stripline dimensions are 18 μm wide, 3 μm thick, and 6 mm long.

Fig. 3
Fig. 3

Response of modulator to an 8.6-V peak-to-peak sawtooth voltage drive at 10 kHz. The electrical zero is at the center of the display; the optical zero is the base line determined by blocking the laser input.

Fig. 4
Fig. 4

Modulator output when modulated by a 1-GHz rf signal at 40 mW.

Fig. 5
Fig. 5

Frequency spectrum of modulator output driven by ≈600-mW input power at 3 GHz for (a) ϕ0 = π, (b) ϕ0 = 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 cos 2 ( Γ / 2 ) ,
E 1 α E 0 sin [ Ω 0 t + ϕ 0 + ( ϕ 1 / 2 ) cos ( ω 1 t ) ] , E 2 ( 1 - α ) E 0 sin [ Ω 0 t - ( ϕ 1 / 2 ) cos ( ω 1 t ) ] ,
Ω 0 : ( ½ ) [ J 0 2 ( ϕ 1 / 2 ) ] [ 1 + 2 α ( 1 - α ) cos ϕ 0 ] , Ω 0 ± ω 1 : ( ½ ) [ J 1 2 ( ϕ 1 / 2 ) ] [ 1 - 2 α ( 1 - α ) cos ϕ 0 ] , Ω 0 + 2 ω 1 : ( ½ ) [ J 2 2 ( ϕ 1 / 2 ) ] [ 1 + 2 α ( 1 - α ) cos ϕ 0 ] , Ω 0 ± 2 ω 1 : ( ½ ) [ J 3 2 ( ϕ 1 / 2 ) ] [ 1 - 2 α ( 1 - α ) cos ϕ 0 ] .

Metrics