Abstract

Preliminary results concerning the use of silicon photodiodes designed to be used in the photon counting or Geiger mode are described. These Geiger photodiodes have higher detected quantum efficiency than photomultiplier tubes over the 5000–9000-Å wavelength region and are especially superior at longer wavelengths, although they can only be used in the Geiger mode at relatively low flux rates (<104/sec). Diodes operating in this mode are probably the fastest photon counting detectors in existence. The limitations and properties of Geiger diodes currently available are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. K. Anderson, B. J. McMurtry, Proc. IEEE 54, 1355 (19660.
  2. H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
    [CrossRef]
  3. K. M. Johnson, IEEE Trans. Electron Dev. ED-12, 55 (1965).
    [CrossRef]
  4. H. Melchior, Phys. Today 30, 32 (1977).
    [CrossRef]
  5. P. A. Ekstrom, J. Appl. Phys. 52, 6974 (1981).
    [CrossRef]
  6. R. J. McIntyre, at IEEE Device Research Conference, Santa Barbara, Calif., 22–24 June 1981.
  7. P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).
  8. R. J. McIntyre, IEEE Trans. Electron Dev. ED-19, 703 (1972).
    [CrossRef]
  9. S. D. Personick, Bell Syst. Tech. J. 50, 167 (1971).
  10. J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
    [CrossRef]
  11. S. C. De Vos, Physics 20, 690 (1954).
  12. B. E. A. Saleh, Photoelectron Statistics, Vol. 6, Springer Series in Optical Sciences (Springer, New York, 1978).

1981 (1)

P. A. Ekstrom, J. Appl. Phys. 52, 6974 (1981).
[CrossRef]

1980 (1)

J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
[CrossRef]

1977 (1)

H. Melchior, Phys. Today 30, 32 (1977).
[CrossRef]

1974 (1)

P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).

1972 (1)

R. J. McIntyre, IEEE Trans. Electron Dev. ED-19, 703 (1972).
[CrossRef]

1971 (1)

S. D. Personick, Bell Syst. Tech. J. 50, 167 (1971).

1970 (1)

H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
[CrossRef]

1966 (1)

L. K. Anderson, B. J. McMurtry, Proc. IEEE 54, 1355 (19660.

1965 (1)

K. M. Johnson, IEEE Trans. Electron Dev. ED-12, 55 (1965).
[CrossRef]

1954 (1)

S. C. De Vos, Physics 20, 690 (1954).

Anderson, L. K.

L. K. Anderson, B. J. McMurtry, Proc. IEEE 54, 1355 (19660.

Arams, F.

H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
[CrossRef]

Baldini, G.

J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
[CrossRef]

Conradi, J.

P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).

De Vos, S. C.

S. C. De Vos, Physics 20, 690 (1954).

Dusek, J.

J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
[CrossRef]

Ekstrom, P. A.

P. A. Ekstrom, J. Appl. Phys. 52, 6974 (1981).
[CrossRef]

Fisher, M. B.

H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
[CrossRef]

Johnson, K. M.

K. M. Johnson, IEEE Trans. Electron Dev. ED-12, 55 (1965).
[CrossRef]

Kearney, R. J.

J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
[CrossRef]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).

R. J. McIntyre, IEEE Trans. Electron Dev. ED-19, 703 (1972).
[CrossRef]

R. J. McIntyre, at IEEE Device Research Conference, Santa Barbara, Calif., 22–24 June 1981.

McMurtry, B. J.

L. K. Anderson, B. J. McMurtry, Proc. IEEE 54, 1355 (19660.

Melchior, H.

H. Melchior, Phys. Today 30, 32 (1977).
[CrossRef]

Melchoir, H.

H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
[CrossRef]

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 50, 167 (1971).

Saleh, B. E. A.

B. E. A. Saleh, Photoelectron Statistics, Vol. 6, Springer Series in Optical Sciences (Springer, New York, 1978).

Webb, P. P.

P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).

Am. J. Phys. (1)

J. Dusek, R. J. Kearney, G. Baldini, Am. J. Phys. 48, 232 (1980).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, Bell Syst. Tech. J. 50, 167 (1971).

IEEE Trans. Electron Dev. (2)

K. M. Johnson, IEEE Trans. Electron Dev. ED-12, 55 (1965).
[CrossRef]

R. J. McIntyre, IEEE Trans. Electron Dev. ED-19, 703 (1972).
[CrossRef]

J. Appl. Phys. (1)

P. A. Ekstrom, J. Appl. Phys. 52, 6974 (1981).
[CrossRef]

Phys. Today (1)

H. Melchior, Phys. Today 30, 32 (1977).
[CrossRef]

Physics (1)

S. C. De Vos, Physics 20, 690 (1954).

Proc. IEEE (2)

L. K. Anderson, B. J. McMurtry, Proc. IEEE 54, 1355 (19660.

H. Melchoir, M. B. Fisher, F. Arams, Proc. IEEE 58, 1466 (1970).
[CrossRef]

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, J. Conradi, RCA Rev. 35, 234 (1974).

Other (2)

R. J. McIntyre, at IEEE Device Research Conference, Santa Barbara, Calif., 22–24 June 1981.

B. E. A. Saleh, Photoelectron Statistics, Vol. 6, Springer Series in Optical Sciences (Springer, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Regulated diode power supply. The resistors designated by * are low-temperature coefficient resistors. Rx is a resistance mounted on a header; the value of R is changed for individual Geiger diodes.

Fig. 2
Fig. 2

Histogram of delays between counts. The time axis is the time delay between each pulse and the pulse following. The flux for these data was 100/sec, and the total number of counts was 5500.

Tables (1)

Tables Icon

Table I Summary of Results at Optimum Voltage with a Diode Flux at 5450/sec

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N = n + n Z + ( n Z ) Z = [ ( n Z ) Z ] Z + = n / ( 1 - Z ) = n G .
Δ N 2 = n 2 Δ G 2 + G 2 Δ n 2 + Δ G 2 Δ n 2 .
G = 1 / ( 1 - Z ) and G 2 = 1 / ( 1 - Z ) 3
Δ G 3 = Z / ( 1 - Z ) 3 .
Δ N 2 single = ( 1 + Z ) / ( 1 - Z ) 3
Δ N 2 T = n Δ N 2 single .
SNR = ( N 2 / Δ N 2 T ) 1 / 2 = [ n ( 1 - Z ) / ( 1 + Z ) ] 1 / 2 .
N = 2 π 2 c Δ λ λ 4 [ exp ( h c / λ K T ) - 1 ] ( r 0 2 r f 2 D 2 ) T .
n ( 1 - Z ) / ( 1 + Z ) = ( SNR ) 2 = 1533 and n / ( 1 - Z ) = 2310.

Metrics