Abstract

An account of the formation and characterization of stripe waveguides formed by silver/sodium ion exchange is given. It is shown that the variation of effective index with guide width can be predicted with good accuracy using a computer model to both solve the exchange equation to obtain the refractive index profile and to calculate the modes of the resulting structure. It is found that while the use of an anodized aluminum mask results in low-loss waveguides, a metallic mask causes deposition of silver at the edges of the guide. The experimental methods used for aluminum anodization and for characterization of the waveguides are described in detail.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Walker, C. D. W. Wilkinson, Appl. Opt. 22, 1029 (1983).
    [CrossRef] [PubMed]
  2. M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
    [CrossRef]
  3. R. G. Walker, C. D. W. Wilkinson, Appl. Opt. 22, 1929 (1983).
    [CrossRef] [PubMed]
  4. R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
    [CrossRef]
  5. R. H. Doremus, “Ion Exchange in Glasses” in Ion Exchange—a Series of Advances, J. A. Marinsky, Ed. (Dekker, New York, 1969), Chap. 1.
  6. G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
    [CrossRef]
  7. A. R. Mitchell, Computational Methods in Partial Differential Equations (Wiley, London, 1969).
  8. M. L. Huggins, S. Kuan-Han, J. Am. Ceram. Soc. 26, 4 (1943).
    [CrossRef]
  9. H. F. Taylor, IEEE J. Quantum Electron. QE-12, 748 (1976).
    [CrossRef]
  10. M. Matsuhara, J. Opt. Soc. Am. 63, 1514 (1973).
    [CrossRef]
  11. G. B. Hocker, W. K. Burns, Appl. Opt. 16, 113 (1977).
    [CrossRef] [PubMed]
  12. S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.
  13. C. A. Millar, R. H. Hutchins, J. Phys. D. 11, 1567 (1978).
    [CrossRef]

1983 (2)

1978 (1)

C. A. Millar, R. H. Hutchins, J. Phys. D. 11, 1567 (1978).
[CrossRef]

1977 (2)

G. B. Hocker, W. K. Burns, Appl. Opt. 16, 113 (1977).
[CrossRef] [PubMed]

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

1976 (2)

H. F. Taylor, IEEE J. Quantum Electron. QE-12, 748 (1976).
[CrossRef]

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

1973 (1)

1964 (1)

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

1943 (1)

M. L. Huggins, S. Kuan-Han, J. Am. Ceram. Soc. 26, 4 (1943).
[CrossRef]

Burns, W. K.

De La Rue, R. M.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

Doremus, R. H.

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

R. H. Doremus, “Ion Exchange in Glasses” in Ion Exchange—a Series of Advances, J. A. Marinsky, Ed. (Dekker, New York, 1969), Chap. 1.

Heiblum, M.

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

Hocker, G. B.

Huggins, M. L.

M. L. Huggins, S. Kuan-Han, J. Am. Ceram. Soc. 26, 4 (1943).
[CrossRef]

Hutchins, R. H.

C. A. Millar, R. H. Hutchins, J. Phys. D. 11, 1567 (1978).
[CrossRef]

Kuan-Han, S.

M. L. Huggins, S. Kuan-Han, J. Am. Ceram. Soc. 26, 4 (1943).
[CrossRef]

Laybourn, P. J. R.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

Matsuhara, M.

Millar, C. A.

C. A. Millar, R. H. Hutchins, J. Phys. D. 11, 1567 (1978).
[CrossRef]

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

Mitchell, A. R.

A. R. Mitchell, Computational Methods in Partial Differential Equations (Wiley, London, 1969).

Pinner, R.

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

Stewart, G.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

Taylor, H. F.

H. F. Taylor, IEEE J. Quantum Electron. QE-12, 748 (1976).
[CrossRef]

Walker, R. G.

Wernick, S.

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

Wilkinson, C. D. W.

R. G. Walker, C. D. W. Wilkinson, Appl. Opt. 22, 1029 (1983).
[CrossRef] [PubMed]

R. G. Walker, C. D. W. Wilkinson, Appl. Opt. 22, 1929 (1983).
[CrossRef] [PubMed]

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (3)

M. Heiblum, IEEE J. Quantum Electron. QE-12, 463 (1976).
[CrossRef]

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De La Rue, IEEE J. Quantum Electron. QE-13, 192 (1977).
[CrossRef]

H. F. Taylor, IEEE J. Quantum Electron. QE-12, 748 (1976).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. L. Huggins, S. Kuan-Han, J. Am. Ceram. Soc. 26, 4 (1943).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

R. H. Doremus, J. Phys. Chem. 68, 2212 (1964).
[CrossRef]

J. Phys. D. (1)

C. A. Millar, R. H. Hutchins, J. Phys. D. 11, 1567 (1978).
[CrossRef]

Other (3)

S. Wernick, R. Pinner, Surface Treatment of Aluminum (Robert Draper, Ltd., Teddington, U.K., 1972), Vol. 1.

R. H. Doremus, “Ion Exchange in Glasses” in Ion Exchange—a Series of Advances, J. A. Marinsky, Ed. (Dekker, New York, 1969), Chap. 1.

A. R. Mitchell, Computational Methods in Partial Differential Equations (Wiley, London, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Computed contours of normalized silver concentration for 2-μm wide diffusion aperture: (a) after initial diffusion (10 min at 215°C); (b) after postbake of 10 min at 215°C; (c) after postbake of 30 min at 215°C.

Fig. 2
Fig. 2

Comparison of the effective index method with our accurate numerical solution for stripe ion-exchanged guides (dif + wave).

Fig. 3
Fig. 3

Computed and experimental modes of ion-exchanged slab waveguides. The theoretical curves use the computed profile for α = 0.7 with n1 = 1.5985 and D a = 1.02 × 10−16 m2 sec−1.

Fig. 4
Fig. 4

Photomicrographs of the surface of ion-exchanged guides after diffusion mask removal: (a) 50-μm ring of 5-μm wide guides and aluminum diffusion mask; (b) 20-μm wide stripe at transition from metallic aluminum mask to fully anodized mask.

Fig. 5
Fig. 5

Schematic diagram illustrating the electrolytic deposition of silver beneath the edge of an aluminum mask during ion-exchange. (Potentials V am and V gm are naturally occurring.)

Fig. 6
Fig. 6

Effective index plotted vs diffusion aperture width: (a) metallic aluminum mask; (b) anodized mask and computed theory.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

u + w = 1 ,
φ a = - D a [ grad u - ( e k T ) u E ] , φ b = - D b [ grad w - ( e k T ) w E ] ,
u t = - w t ,
u t = - div φ a             and            w t = - div φ b ,
div ( φ a + φ b ) = 0.
div [ α grad u + e k T ( 1 - α u ) E ] = 0 ,
α grad u + e k T ( 1 - α u ) E = 0
u t = x ( D a 1 - α u · u t ) + y ( D a 1 - α u · u y ) .
2 ψ + k 2 ψ = β 2 ψ
α = 0.7 , n 1 = 1.599 , D a = 1.02 × 10 - 16 m 2 · sec - 1 .

Metrics