Abstract

In the field of optical communications and integrated optics, it would be worthwhile to have an experimental technique allowing a sensitive and precise determination of the cutoff wavelength in dielectric waveguides of various form, size, and length. In this paper we show how evaluation of the coherence properties of the EM field on a cross section of a generic dielectric waveguide is a precise technique suitable for this purpose. We also apply the method to determine the cutoff wavelength of an optical fiber in various experimental conditions and present the results.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
    [CrossRef]
  2. Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
    [CrossRef]
  3. V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
    [CrossRef]
  4. Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
    [CrossRef]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964), p. 505.
  6. P. Spano, Opt. Commun. 33, 265 (1980).
    [CrossRef]
  7. S. Piazzolla, P. Spano, Opt. Commun. 43, 175 (1982).
    [CrossRef]

1982

S. Piazzolla, P. Spano, Opt. Commun. 43, 175 (1982).
[CrossRef]

1981

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

1980

P. Spano, Opt. Commun. 33, 265 (1980).
[CrossRef]

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

1976

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Bhagavatula, V. A.

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964), p. 505.

Dyott, R. B.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

Kahara, M.

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Kato, Y.

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Keck, D. B.

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

Kitayama, K. I.

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Lowe, F. W.

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

Piazzolla, S.

S. Piazzolla, P. Spano, Opt. Commun. 43, 175 (1982).
[CrossRef]

Seikai, S.

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Spano, P.

S. Piazzolla, P. Spano, Opt. Commun. 43, 175 (1982).
[CrossRef]

P. Spano, Opt. Commun. 33, 265 (1980).
[CrossRef]

Tokuda, M.

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Uchida, N.

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Ukida, N.

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Westing, R. A.

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964), p. 505.

Electron. Lett.

Y. Katsuyama, M. Tokuda, N. Ukida, M. Kahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

V. A. Bhagavatula, F. W. Lowe, D. B. Keck, R. A. Westing, Electron. Lett. 16, 695 (1980).
[CrossRef]

IEE J. Microwave Opt. Acoust.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwave Opt. Acoust. 1, 13 (1976).
[CrossRef]

IEEE J. Quantum Electron.

Y. Kato, K. I. Kitayama, S. Seikai, N. Uchida, IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Opt. Commun.

P. Spano, Opt. Commun. 33, 265 (1980).
[CrossRef]

S. Piazzolla, P. Spano, Opt. Commun. 43, 175 (1982).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964), p. 505.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Near-field intensity (dashed curves) and modulus of complex degree of coherence (continuous curves) vs x computed at two values of the ratio (a1/a0)2. The dash–dot curve represents the near-field intensity when only the fundamental mode is present.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Fringe pattern obtained at (a) 700 nm, (b) 550 nm, and (c) 450 nm with a Valtec SM-05 fiber 2 m long.

Fig. 4
Fig. 4

Values of the ratio (a1/a0)2 vs λ obtained with two different samples of a Valtec SM-05 fiber 2 m long.

Fig. 5
Fig. 5

Values of the ratio (a1/a0)2 vs λ for a Valtec SM-05 fiber 450 m long with (dashed curve) and without (continuous curve) stress.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E y ( x , y 0 t ) = n a n f n ( x , y 0 ) exp { i [ ω t + ϕ n ( t ) ] } ,
E y ( x , y 0 , t , τ ) = E y ( x , y 0 , t ) + E y ( - x , y 0 , t + τ ) = n a n f n ( x , y 0 ) exp { i [ ω t + ϕ n ( t ) ] } + a n f n ( - x , y 0 ) exp { i [ ω ( t + τ ) + ϕ n ( t + τ ) ] } .
I t ( x , y 0 , τ ) = E y ( x , y 0 , t , τ ) E y * ( x , y 0 , t , τ ) ,
I t ( x , y 0 , τ ) = n a n 2 f n 2 ( x , y 0 ) + a n 2 f n 2 ( - x , y 0 ) + 2 Re [ a n 2 f n ( x , y 0 ) f n ( - x , y 0 ) exp ( - i ω τ ) ]
μ ( x , - x , y 0 ) I max ( x , y 0 ) - I min ( x , y 0 ) I max ( x , y 0 ) + I min ( x , y 0 ) I ( x , y 0 ) + I ( - x , y 0 ) 2 [ I ( x , y 0 ) I ( - x , y 0 ) ] 1 / 2 = | n a n 2 f n ( x , y 0 ) f n ( - x , y 0 ) | × [ n a n 2 f n 2 ( x , y 0 ) n a n 2 f n 2 ( - x , y 0 ) ] - 1 / 2 ,
μ ( x , - x , y 0 ) = I max ( x , y 0 ) - I min ( x , y 0 ) I max ( x , y 0 ) + I min ( x , y 0 ) = | n a n 2 f n ( x , y 0 ) f n ( - x , y 0 ) | n a n 2 f n a ( x , y 0 ) .

Metrics