Abstract

In this paper, we demonstrate the applicability of PA pulse generation for the monitoring of ultrasonic properties of powders, for example, uncured carbon-loaded epoxy resin powders, whose average particle diameter is ~15 μm. The acoustic pulse is generated by a short laser pulse (10-nsec or 1-μsec duration) of 1–10-mJ energy and is detected by a piezoelectric detector (polyvinylidene difluoride foil or commercial lead zirconate titanate transducer). This allows ultrasonic measurements over a broad range of porosity and pressure conditions, from loose unconsolidated powers to heat- and pressure-sintered pellets. For loose powders at atmospheric pressures (with a porosity of ~50%), the acoustic velocity is remarkably small (typically 3 × 103 cm/sec), and attenuation and dispersion are large. This appears to be the first demonstration of the use of a PA technique to measure ultrasonic properties in powders.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review, see A. L. Anderson, L. D. Hampton, J. Acoust. Soc. Am. 67, 1865 (1980).
    [CrossRef]
  2. A. B. Wood, A Textbook of Sound (Bell, London, 1941), pp. 361–362.
  3. M. A. Biot, J. Acoust. Soc. Am. 28, 168, 179 (1955).
    [CrossRef]
  4. F. Gassman, Geophysics 16, 673 (1951).
    [CrossRef]
  5. H. Deresiewicz, Adv. Appl. Mech. 5, 233 (1958).
    [CrossRef]
  6. See, for example, C. C. Pilbeam, J. R. Vaisnys, J. Geophys. Res. 78, 810 (1973) and references therein.
    [CrossRef]
  7. T. J. Plona, Appl. Phys. Lett. 36, 259 (1980).
    [CrossRef]
  8. D. L. Johnson, P. N. Sen, Phys. Rev. B 24, 2486 (1981).
    [CrossRef]
  9. Toners available from Hitachi Metal of America, 1 Red Oak Lane, White Plains, N.Y. 10604.
  10. Copper powder, 140 mesh, available from Sargent-Welch Scientific Co., 7300 N. Linda Ave., Skokie, Ill. 60077.
  11. Laser model LFDL-1, Candela Corp., 96 South Ave., Natick, Mass. 01760.
  12. Transducer model V306, Panametrics, 221 Crescent St., Waltham, Mass. 02154.
  13. Preamplifier model 1201, Ithaco, Inc., 735 W. Clinton St., Ithaca, N.Y. 14850.
  14. Oscilloscope model 7854, Tektronix Inc., P.O. Box 500, Beaverton, Ore. 97077.
  15. PVF2 foil model Kynar 5412-144A-2, Pennwalt Corp., 900 First Ave., P.O. Box C, King of Prussia, Pa. 19406.
  16. Laser model UV12, Molectron Corp., 177 N. Wolfe Rd., Sunnyvale, Calif. 94086.
  17. K. Kendall, Contemp. Phys. 21, 277 (1980).
    [CrossRef]

1981 (1)

D. L. Johnson, P. N. Sen, Phys. Rev. B 24, 2486 (1981).
[CrossRef]

1980 (3)

K. Kendall, Contemp. Phys. 21, 277 (1980).
[CrossRef]

T. J. Plona, Appl. Phys. Lett. 36, 259 (1980).
[CrossRef]

For a recent review, see A. L. Anderson, L. D. Hampton, J. Acoust. Soc. Am. 67, 1865 (1980).
[CrossRef]

1973 (1)

See, for example, C. C. Pilbeam, J. R. Vaisnys, J. Geophys. Res. 78, 810 (1973) and references therein.
[CrossRef]

1958 (1)

H. Deresiewicz, Adv. Appl. Mech. 5, 233 (1958).
[CrossRef]

1955 (1)

M. A. Biot, J. Acoust. Soc. Am. 28, 168, 179 (1955).
[CrossRef]

1951 (1)

F. Gassman, Geophysics 16, 673 (1951).
[CrossRef]

Anderson, A. L.

For a recent review, see A. L. Anderson, L. D. Hampton, J. Acoust. Soc. Am. 67, 1865 (1980).
[CrossRef]

Biot, M. A.

M. A. Biot, J. Acoust. Soc. Am. 28, 168, 179 (1955).
[CrossRef]

Deresiewicz, H.

H. Deresiewicz, Adv. Appl. Mech. 5, 233 (1958).
[CrossRef]

Gassman, F.

F. Gassman, Geophysics 16, 673 (1951).
[CrossRef]

Hampton, L. D.

For a recent review, see A. L. Anderson, L. D. Hampton, J. Acoust. Soc. Am. 67, 1865 (1980).
[CrossRef]

Johnson, D. L.

D. L. Johnson, P. N. Sen, Phys. Rev. B 24, 2486 (1981).
[CrossRef]

Kendall, K.

K. Kendall, Contemp. Phys. 21, 277 (1980).
[CrossRef]

Pilbeam, C. C.

See, for example, C. C. Pilbeam, J. R. Vaisnys, J. Geophys. Res. 78, 810 (1973) and references therein.
[CrossRef]

Plona, T. J.

T. J. Plona, Appl. Phys. Lett. 36, 259 (1980).
[CrossRef]

Sen, P. N.

D. L. Johnson, P. N. Sen, Phys. Rev. B 24, 2486 (1981).
[CrossRef]

Vaisnys, J. R.

See, for example, C. C. Pilbeam, J. R. Vaisnys, J. Geophys. Res. 78, 810 (1973) and references therein.
[CrossRef]

Wood, A. B.

A. B. Wood, A Textbook of Sound (Bell, London, 1941), pp. 361–362.

Adv. Appl. Mech. (1)

H. Deresiewicz, Adv. Appl. Mech. 5, 233 (1958).
[CrossRef]

Appl. Phys. Lett. (1)

T. J. Plona, Appl. Phys. Lett. 36, 259 (1980).
[CrossRef]

Contemp. Phys. (1)

K. Kendall, Contemp. Phys. 21, 277 (1980).
[CrossRef]

Geophysics (1)

F. Gassman, Geophysics 16, 673 (1951).
[CrossRef]

J. Acoust. Soc. Am. (2)

M. A. Biot, J. Acoust. Soc. Am. 28, 168, 179 (1955).
[CrossRef]

For a recent review, see A. L. Anderson, L. D. Hampton, J. Acoust. Soc. Am. 67, 1865 (1980).
[CrossRef]

J. Geophys. Res. (1)

See, for example, C. C. Pilbeam, J. R. Vaisnys, J. Geophys. Res. 78, 810 (1973) and references therein.
[CrossRef]

Phys. Rev. B (1)

D. L. Johnson, P. N. Sen, Phys. Rev. B 24, 2486 (1981).
[CrossRef]

Other (9)

Toners available from Hitachi Metal of America, 1 Red Oak Lane, White Plains, N.Y. 10604.

Copper powder, 140 mesh, available from Sargent-Welch Scientific Co., 7300 N. Linda Ave., Skokie, Ill. 60077.

Laser model LFDL-1, Candela Corp., 96 South Ave., Natick, Mass. 01760.

Transducer model V306, Panametrics, 221 Crescent St., Waltham, Mass. 02154.

Preamplifier model 1201, Ithaco, Inc., 735 W. Clinton St., Ithaca, N.Y. 14850.

Oscilloscope model 7854, Tektronix Inc., P.O. Box 500, Beaverton, Ore. 97077.

PVF2 foil model Kynar 5412-144A-2, Pennwalt Corp., 900 First Ave., P.O. Box C, King of Prussia, Pa. 19406.

Laser model UV12, Molectron Corp., 177 N. Wolfe Rd., Sunnyvale, Calif. 94086.

A. B. Wood, A Textbook of Sound (Bell, London, 1941), pp. 361–362.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the apparatus to measure acoustic propagations in loose uncompressed powders in air using PA pulse generation and piezoelectric detection.

Fig. 2
Fig. 2

Schematics of the apparatus to study effect of high applied pressure. The powder (dotted) is in contact with a transparent window at the top and with a PVF2 piezoelectric foil at the bottom.

Fig. 3
Fig. 3

Observed PA pulse signal for a compressed toner powder sample. The compression pressure is 7000 psi, and the acoustic path length is 5.5 mm.

Fig. 4
Fig. 4

Dependence of the propagation time on the path length (i.e., depth) of a loose uncompressed toner powder (Hitachi HMT 208) in air.

Fig. 5
Fig. 5

Observed data for the acoustic properties of a toner powder (Hitachi HMT 208) depending on the applied pressure in psi. The unit for the velocity is cm/sec, and for the FWHM of the acoustic pulse is μsec.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

porosity = n = 1 - apparent density neat density .
V = ( K / ρ ) 1 / 2 ,
K = K m [ ( K b + Q ) / ( K m + Q ) ] , Q = ( K f ( K m - K b ) ) / [ n ( K m - K f ) ] , ρ = n ρ f + ( 1 - n ) ρ m .
V ~ ( K f / ρ ) 1 / 2 ,
K b = 1.5 [ K m / ( 1 - r 2 ) ] 2 / 5 R 2 / 5 P 0 3 / 5 ,

Metrics