Abstract

A general computer simulation analysis of the coupling efficiency between surface emitting LEDs and optical fibers has been carried out using ray tracing techniques. Coupling efficiencies were evaluated as a function of both the fiber numerical aperture (N.A.) and the ratio of the fiber core diameter dF to the LED emission diameter dE for a spherical lens positioned between the LED and fiber. Coupling efficiencies near the theoretical maximum values were obtained for dF/dE ≤ 5 for 0.20-N.A. fibers and for dF/dE ≤ 2.5 for 0.40-N.A. fibers by optimizing the lens’s index of refraction and the LED-to-lens spacing.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).
  2. M. Abe et al., IEEE Trans. Electron Devices ED-24, 990 (1977).
    [CrossRef]
  3. L. G. Cohen, M. V. Schnieder, Appl. Opt. 13, 89 (1974).
    [CrossRef] [PubMed]
  4. J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
    [CrossRef]
  5. Y. Uematsu, IEEE J. Quantum Electron. QE-15, 86 (1979).
    [CrossRef]
  6. H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
    [CrossRef]
  7. S. Horiuchi et al., IEEE Trans. Electron Devices ED-24, 986 (1977).
    [CrossRef]
  8. J. G. Ackenhusen, Appl. Opt. 18, 3694 (1979).
    [CrossRef] [PubMed]
  9. R. C. Goodfellow et al., IEEE Trans. Electron Devices ED-26, 1215 (1979).
    [CrossRef]
  10. R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
    [CrossRef]
  11. J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.
  12. J. Jarominski, Appl. Opt. 21, 2461 (1982).
    [CrossRef] [PubMed]
  13. O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
    [CrossRef]
  14. H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).
  15. R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).
  16. B. Johnson et al., Proc. Electron. Components Conf. 30, 279 (1980).
  17. M. K. Barnoski, Fundamentals of Optical Fiber Communications (Academic, New York, 1976).
  18. N. S. Kaplan, Fiber Optics (Academic, New York, 1976).
  19. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).
  20. B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975).
    [CrossRef]
  21. Military Standardization Handbook; Optical Design, MIL-HDBK-141 (U.S. GPO, Washington, D.C., 1962).
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1969).
  23. P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 365.
  24. M. C. Hudson, Appl. Opt. 13, 1029 (1974).
    [CrossRef] [PubMed]

1982 (2)

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

J. Jarominski, Appl. Opt. 21, 2461 (1982).
[CrossRef] [PubMed]

1981 (1)

H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
[CrossRef]

1980 (4)

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).

B. Johnson et al., Proc. Electron. Components Conf. 30, 279 (1980).

1979 (4)

J. G. Ackenhusen, Appl. Opt. 18, 3694 (1979).
[CrossRef] [PubMed]

Y. Uematsu, IEEE J. Quantum Electron. QE-15, 86 (1979).
[CrossRef]

D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).

R. C. Goodfellow et al., IEEE Trans. Electron Devices ED-26, 1215 (1979).
[CrossRef]

1977 (2)

M. Abe et al., IEEE Trans. Electron Devices ED-24, 990 (1977).
[CrossRef]

S. Horiuchi et al., IEEE Trans. Electron Devices ED-24, 986 (1977).
[CrossRef]

1975 (2)

R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
[CrossRef]

B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975).
[CrossRef]

1974 (2)

Abe, M.

M. Abe et al., IEEE Trans. Electron Devices ED-24, 990 (1977).
[CrossRef]

Abe, N.

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

Abram, R. A.

R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
[CrossRef]

Ackenhusen, J. G.

Allen, R. W.

R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
[CrossRef]

Barnoski, M. K.

M. K. Barnoski, Fundamentals of Optical Fiber Communications (Academic, New York, 1976).

Berg, H. M.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
[CrossRef]

Boltz, D.

D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1969).

Cohen, L. G.

Davis, P. J.

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 365.

Ettenberg, M.

D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).

Faultless, M.

J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.

Goodfellow, R.

J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.

Goodfellow, R. C.

R. C. Goodfellow et al., IEEE Trans. Electron Devices ED-26, 1215 (1979).
[CrossRef]

R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
[CrossRef]

Hasegawa, O.

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

Hawkins, B.

R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).

Horiuchi, S.

S. Horiuchi et al., IEEE Trans. Electron Devices ED-24, 986 (1977).
[CrossRef]

Howell, J. R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).

Hudson, M. C.

Hunpage, J.

J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.

Jarominski, J.

Johnson, B.

B. Johnson et al., Proc. Electron. Components Conf. 30, 279 (1980).

Johnson, D. C.

B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975).
[CrossRef]

Kaplan, N. S.

N. S. Kaplan, Fiber Optics (Academic, New York, 1976).

Kawasaki, B. S.

B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975).
[CrossRef]

Lewis, G. L.

H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
[CrossRef]

Lofgran, L.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

Mitchell, C. M.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

Mitchell, C. W.

H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
[CrossRef]

Namzu, R.

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

Quill, M.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

Rabinowitz, P.

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 365.

Schnieder, M. V.

Shealy, D. L.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

Siegel, R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).

Speer, R.

R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).

Stevenson, D.

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

Toyama, Y.

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

Uematsu, Y.

Y. Uematsu, IEEE J. Quantum Electron. QE-15, 86 (1979).
[CrossRef]

Ure, J.

J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1969).

Yamada, J.

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

Appl. Opt. (4)

IEEE J. Quantum Electron. (2)

J. Yamada et al., IEEE J. Quantum Electron. QE-16, 1067 (1980).
[CrossRef]

Y. Uematsu, IEEE J. Quantum Electron. QE-15, 86 (1979).
[CrossRef]

IEEE Trans. Components Hybrids Manufacturing Technol. (1)

H. M. Berg, G. L. Lewis, C. W. Mitchell, IEEE Trans. Components Hybrids Manufacturing Technol. CHMT-4, 337 (1981).
[CrossRef]

IEEE Trans. Electron Devices (4)

S. Horiuchi et al., IEEE Trans. Electron Devices ED-24, 986 (1977).
[CrossRef]

R. C. Goodfellow et al., IEEE Trans. Electron Devices ED-26, 1215 (1979).
[CrossRef]

D. Boltz, M. Ettenberg, IEEE Trans. Electron Devices ED-26, 1230 (1979).

M. Abe et al., IEEE Trans. Electron Devices ED-24, 990 (1977).
[CrossRef]

J. Appl. Phys. (2)

R. A. Abram, R. W. Allen, R. C. Goodfellow, J. Appl. Phys. 46(8), 3469 (1975).
[CrossRef]

O. Hasegawa, R. Namzu, N. Abe, Y. Toyama, J. Appl. Phys. 51, 30 (1980).
[CrossRef]

Opt. Quantum Electron. (1)

B. S. Kawasaki, D. C. Johnson, Opt. Quantum Electron. 7, 281 (1975).
[CrossRef]

Proc. Electron. Components Conf. (3)

H. M. Berg, D. L. Shealy, C. M. Mitchell, D. Stevenson, M. Quill, L. Lofgran, Proc. Electron. Components Conf. 32, 111 (1982).

R. Speer, B. Hawkins, Proc. Electron. Components Conf. 30, 270 (1980).

B. Johnson et al., Proc. Electron. Components Conf. 30, 279 (1980).

Other (7)

M. K. Barnoski, Fundamentals of Optical Fiber Communications (Academic, New York, 1976).

N. S. Kaplan, Fiber Optics (Academic, New York, 1976).

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1972).

J. Hunpage, R. Goodfellow, J. Ure, M. Faultless, “High Power, High Speed GaAlAs D.H. LED’s for Optical Communication,” to be published.

Military Standardization Handbook; Optical Design, MIL-HDBK-141 (U.S. GPO, Washington, D.C., 1962).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1969).

P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975), p. 365.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of optical model used in computer simulation of coupling between surface emitting LED and optical fiber.

Fig. 2
Fig. 2

Schematic illustrating light emission from a planar LED surface with a disk shaped emitting area S0 with light intercepting an element of area dS1 in a grid on the entrance pupil (or LED surface).

Fig. 3
Fig. 3

Variation of coupling efficiency with LED–fiber spacing for a spheroidized fiber positioned over an uncoated LED (dF/dE = 2). Each LED–fiber spacing represents coupling from an optimized fiber end radius rf for the appropriate fiber N.A.

Fig. 4
Fig. 4

Variation of peak coupling efficiency with dF/dE for spheroidized fibers with different N.A.’s positioned over an uncoated LED surface. Dashed curves represent theoretical maximum coupling efficiencies. Both Z1 and the lens diameter dL are optimized.

Fig. 5
Fig. 5

Variation of peak coupling efficiency with dF/dE, for fibers with attached spherical lenses (nL = 1.91) positioned over an uncoated LED surface. Dashed curves represent theoretical maximum coupling efficiencies. Both Z1 and the lens diameter dL, are optimized.

Fig. 6
Fig. 6

Variation of coupling efficiency with spherical lens diameter (nL = 1.91) for coupling into 0.20, 0.30, and 0.40 N.A. fibers when dE = 50 μm and dF = 150 μm. The fiber-to-lens and lens-to-LED spacings are 6 μm.

Fig. 7
Fig. 7

Variation of coupling efficiency with dF/dE for optical systems employing a spherical lens (nL = 1.91) immersed in a 1.40 index polymer sandwiched between the LED and optical fiber. Dashed curves represent theoretical maximum coupling efficiencies. Only the lens diameter dL is optimized.

Fig. 8
Fig. 8

Variation of peak coupling efficiency with dF/dE for optical systems employing a spherical lens (nL = 1.91) immersed in a 1.40 index polymer sandwiched between the LED and optical fiber. Dashed curves represent theoretical maximum coupling efficiencies. Both Z1 and the lens diameter dL are optimized.

Fig. 9
Fig. 9

Variation of coupling efficiency with LED–lens spacing for a spherical lens sandwiched between a LED and an optical fiber. The LED emission diameter is 50 μm, and the fiber diameter is 200 μm. Coupling efficiencies both including (dashed) and excluding (solid) Fresnel reflection losses are indicated.

Fig. 10
Fig. 10

Variation of coupling efficiency with index of refraction of a spherical lens sandwiched between a LED and an optical fiber (dF/dE = 3). Both the lens diameter and the lens–LED spacing are optimized.

Fig. 11
Fig. 11

Variation of peak coupling efficiency with dF/dE for optical systems employing a spherical lens immersed in a 1.40 index polymer and sandwiched between the LED and optical fiber. Dashed curves represent theoretical maximum coupling efficiencies. Both Z1, the lens diameter, and the lens index are optimized.

Fig. 12
Fig. 12

Range of dF/dE over which spherical lens can achieve the maximum allowable coupling as a function of the fiber’s N.A. Curves are shown for the three die coat cases in Figs. 7, 8, and 11.

Fig. 13
Fig. 13

Coupling efficiency of the optimized spherical lens case (optimize nL, dL, Z1) relative to butt coupling vs dF/dE for several fiber N.A.’s with a die coated LED surface.

Fig. 14
Fig. 14

Variation of coupling efficiency with LED–lens spacing for a 2.25 index lens positioned over a die coated LED surface, where dF/dE = 4. Solid curves ignore Fresnel reflection losses, while dashed curves include Fresnel losses.

Fig. 15
Fig. 15

Variation of peak coupling efficiency with lens index of refraction for spherical (dashed) and truncated spherical (solid) lenses for dF/dE = 5. The lens–LED spacing is optimized for both lens types, and the truncation factor is optimized for the truncated lens. Die coated LEDs are modeled in both cases.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T = B cos θ r 2 d S 0 ,
θ c = sin - 1 ( n 1 / n E ) ,
C E av = α β F LED - lens ,
F LED - lens = 2 ( d L d E ) 2 { 1 - 1 1 + R E ( Z 1 + R L ) 2 } ,
P E = π B S 0 ( n 1 / n E ) 2 .
d P d S 0 - d S 1 = B cos 2 θ r 01 2 d S 1 d S 0 ,
d P d S 0 - d S 1 = 2 B { i , j = 1 y i 0 N X , N Y τ ( i , j ) cos 2 θ ( i , j ) r 01 2 ( i , j ) d S 1 ( i , j ) } d S 0 ,
P f = 0 R E d P d S 0 - d S 1 .

Metrics