Abstract

Scattering phase matrices are calculated for randomly oriented hexagonal cylinders and equivalent spheroids. The scattering solution for spheroids utilizes a numerical integral equation technique called the T-matrix method, while that for hexagonal cylinders employs a geometric ray-tracing method. Computational results show that there is general agreement for the phase functions P11 for hexagonal cylinders and spheroids with the same overall dimensions or surface area, except for the 22 and 46° halo features and the backscattering maximum produced by the hexagonal geometry. Values of P12 which are associated with linear polarization when the incident light is unpolarized differ in the forward directions where hexagonal cylinders have two positive polarization maxima. Large differences are observed in the P33 and P44 elements.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription