Abstract

Laser-initiated breakdown of N2, O2, and Ar has been investigated at sub-atmospheric pressures using a pulsed (10-nsec) Nd:yttrium aluminum garnet (Nd:YAG) laser at 1.06 μm. Breakdown thresholds have been determined from 3 to 760 Torr, and spectral analysis of the plasma emission has been carried out at 10 and 125 Torr over the 300–600-nm range. Sharp spectral features arising from highly excited singly and multiply charged ions are reported as well as an underlying continuum at intermediate pressure. Time-resolved measurements indicate a complex kinetic dynamic optical behavior.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Morgan, Sci. Prog. 65, 31 (1978) and references therein.
  2. J. Stricker, J. G. Parker, J. Appl. Phys. 53, 851 (1982).
    [CrossRef]
  3. L. J. Radziemski, T. R. Loree, Plasma Chem. Plasma Process. 1, 281 (1981).
    [CrossRef]
  4. L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.
  5. C. L. M. Ireland, J. Phys. D 7, L179 (1974).
    [CrossRef]
  6. C. L. M. Ireland, C. G. Morgan, J. Phys. D 6, 720 (1973).
    [CrossRef]
  7. F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
    [CrossRef]
  8. Y. Gamal, M. Harith, J. Phys D 14, 2209 (1981).
    [CrossRef]
  9. R. J. Dewhurst, J. Phys. D 10, 283 (1977).
    [CrossRef]
  10. R. J. Dewhurst, J. Phys. D 11, L191 (1978).
    [CrossRef]
  11. P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
    [CrossRef]
  12. G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
    [CrossRef]
  13. R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1976).
    [CrossRef]
  14. W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

1982 (1)

J. Stricker, J. G. Parker, J. Appl. Phys. 53, 851 (1982).
[CrossRef]

1981 (2)

L. J. Radziemski, T. R. Loree, Plasma Chem. Plasma Process. 1, 281 (1981).
[CrossRef]

Y. Gamal, M. Harith, J. Phys D 14, 2209 (1981).
[CrossRef]

1980 (1)

G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
[CrossRef]

1978 (2)

C. G. Morgan, Sci. Prog. 65, 31 (1978) and references therein.

R. J. Dewhurst, J. Phys. D 11, L191 (1978).
[CrossRef]

1977 (1)

R. J. Dewhurst, J. Phys. D 10, 283 (1977).
[CrossRef]

1974 (1)

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

1973 (1)

C. L. M. Ireland, C. G. Morgan, J. Phys. D 6, 720 (1973).
[CrossRef]

1971 (1)

F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
[CrossRef]

1970 (1)

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

1966 (1)

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

Agostini, P.

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

Baravian, G.

G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
[CrossRef]

Barjot, G.

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

Cremers, D. A.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.

Dewhurst, R. J.

R. J. Dewhurst, J. Phys. D 11, L191 (1978).
[CrossRef]

R. J. Dewhurst, J. Phys. D 10, 283 (1977).
[CrossRef]

Evans, L. R.

F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
[CrossRef]

Gamal, Y.

Y. Gamal, M. Harith, J. Phys D 14, 2209 (1981).
[CrossRef]

Gaydon, A. G.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1976).
[CrossRef]

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

Godart, J.

G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
[CrossRef]

Harith, M.

Y. Gamal, M. Harith, J. Phys D 14, 2209 (1981).
[CrossRef]

Hoffman, N. M.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.

Ireland, C. L. M.

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

C. L. M. Ireland, C. G. Morgan, J. Phys. D 6, 720 (1973).
[CrossRef]

Loree, T. R.

L. J. Radziemski, T. R. Loree, Plasma Chem. Plasma Process. 1, 281 (1981).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.

Mainfray, G.

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

Manus, C.

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

Morgan, C. G.

C. G. Morgan, Sci. Prog. 65, 31 (1978) and references therein.

C. L. M. Ireland, C. G. Morgan, J. Phys. D 6, 720 (1973).
[CrossRef]

F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
[CrossRef]

Morgan, F.

F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
[CrossRef]

Parker, J. G.

J. Stricker, J. G. Parker, J. Appl. Phys. 53, 851 (1982).
[CrossRef]

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1976).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, T. R. Loree, Plasma Chem. Plasma Process. 1, 281 (1981).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

Stricker, J.

J. Stricker, J. G. Parker, J. Appl. Phys. 53, 851 (1982).
[CrossRef]

Sultan, G.

G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
[CrossRef]

Thebault, J.

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

Appl. Phys. Lett. (1)

G. Baravian, J. Godart, G. Sultan, Appl. Phys. Lett. 36, 4151980).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Agostini, G. Barjot, G. Mainfray, C. Manus, J. Thebault, IEEE J. Quantum Electron. QE-6, 782 (1970).
[CrossRef]

J. Appl. Phys. (1)

J. Stricker, J. G. Parker, J. Appl. Phys. 53, 851 (1982).
[CrossRef]

J. Phys D (1)

Y. Gamal, M. Harith, J. Phys D 14, 2209 (1981).
[CrossRef]

J. Phys. D (5)

R. J. Dewhurst, J. Phys. D 10, 283 (1977).
[CrossRef]

R. J. Dewhurst, J. Phys. D 11, L191 (1978).
[CrossRef]

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

C. L. M. Ireland, C. G. Morgan, J. Phys. D 6, 720 (1973).
[CrossRef]

F. Morgan, L. R. Evans, C. G. Morgan, J. Phys. D 4, 225 (1971).
[CrossRef]

Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. (1)

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4 (1966).

Plasma Chem. Plasma Process. (1)

L. J. Radziemski, T. R. Loree, Plasma Chem. Plasma Process. 1, 281 (1981).
[CrossRef]

Sci. Prog. (1)

C. G. Morgan, Sci. Prog. 65, 31 (1978) and references therein.

Other (2)

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffman, unpublished.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus. The monochromator was not used in the breakdown threshold measurements (see text).

Fig. 2
Fig. 2

Apparent breakdown thresholds for Ar, N2, and O2. Pressure exponents b obtained from least-squares fits (solid lines) for P > 100 Torr and P < 100 Torr are indicated. For clarity, the argon and oxygen curves have been offset by a factor of 4 from their actual position.

Fig. 3
Fig. 3

Portion of the laser-initiated spectrum obtained for N2 at 10 Torr and Ip = 2× threshold.

Fig. 4
Fig. 4

Determination of apparent electronic temperature of N+ at 10 Torr. The solid line is a least-squares fit to the data and has a slope proportional to T−1.

Fig. 5
Fig. 5

Temporal profile of the 444.7-nm line of N+. Ip is peak laser intensity in W cm−2 at the pressures indicated. The 10-Torr and first 125-Torr curves are generated at Ip of twice threshold for breakdown.

Tables (1)

Tables Icon

Table I Spectral and Temporal Results Obtained for N2 and O2 at 10 and 125 Torr.a

Metrics