Abstract

Improvement in the depth of field is demonstrated by properly processing a succession of image samples. Due to the limited depth of field each image sample has in-focus as well as out-of-focus segments. By setting criteria for selecting the in-focus segments, an improved composite image is formed. Three algorithms for implementing this construction are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mino, Y. Okano, Appl. Opt. 10, 2219 (1971).
    [CrossRef] [PubMed]
  2. M. C. King, D. H. Berry, Appl. Opt. 10, 208 (1971).
    [CrossRef] [PubMed]
  3. J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
    [CrossRef] [PubMed]
  4. J. T. McCrickerd, Appl. Opt. 10, 2226 (1971).
    [CrossRef] [PubMed]
  5. D. McLachlan, Appl. Opt. 3, 1009 (1964).
    [CrossRef]
  6. D. Dale, Functional Photography, May/June, 18 (1982).
  7. R. Smith, Functional Photography, Jan./Feb., 12 (1982).
  8. G. Hausler, Opt. Commun. 6, 38 (1972).
    [CrossRef]
  9. G. Hausler, E. Korner, University of Erlangen, Nuremburg, West Germany, Applied Optics Annual Report, 48 (1981).

1972 (1)

G. Hausler, Opt. Commun. 6, 38 (1972).
[CrossRef]

1971 (4)

1964 (1)

Berry, D. H.

Burke, J. F.

J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
[CrossRef] [PubMed]

Dale, D.

D. Dale, Functional Photography, May/June, 18 (1982).

Hausler, G.

G. Hausler, Opt. Commun. 6, 38 (1972).
[CrossRef]

G. Hausler, E. Korner, University of Erlangen, Nuremburg, West Germany, Applied Optics Annual Report, 48 (1981).

Indebetouw, G.

J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
[CrossRef] [PubMed]

King, M. C.

Korner, E.

G. Hausler, E. Korner, University of Erlangen, Nuremburg, West Germany, Applied Optics Annual Report, 48 (1981).

McCrickerd, J. T.

McLachlan, D.

Mino, M.

Nomarski, G.

J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
[CrossRef] [PubMed]

Okano, Y.

Smith, R.

R. Smith, Functional Photography, Jan./Feb., 12 (1982).

Stroke, G. W.

J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
[CrossRef] [PubMed]

Appl. Opt. (4)

Nature (1)

J. F. Burke, G. Indebetouw, G. Nomarski, G. W. Stroke, Nature 231, 303 (1971).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Hausler, Opt. Commun. 6, 38 (1972).
[CrossRef]

Other (3)

G. Hausler, E. Korner, University of Erlangen, Nuremburg, West Germany, Applied Optics Annual Report, 48 (1981).

D. Dale, Functional Photography, May/June, 18 (1982).

R. Smith, Functional Photography, Jan./Feb., 12 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relation between array coordinates (m,n) and focal-depth-slice number p as discussed in the text.

Fig. 2
Fig. 2

Location of that part of the image slice actually used because of computer memory limitations.

Fig. 3
Fig. 3

Format for display of image slices and composite image on photographs as discussed in the text.

Fig. 4
Fig. 4

Approximate expected dependence of light intensity vs level slice number p for fixed coordinates (m,n).

Fig. 5
Fig. 5

Test object (TV Guide Magazine) in partial focus. (The left-hand page, not used in the experiment, is completely out of focus.)

Fig. 6
Fig. 6

Image slices with type I reconstruction at location 13.

Fig. 7
Fig. 7

Image slices with type II reconstruction at location 13.

Fig. 8
Fig. 8

Arrangement of pixels on which local difference operator Dp(m,n) acts.

Fig. 9
Fig. 9

Image slices with type III reconstruction at locations 13–16.

Fig. 10
Fig. 10

Image slices of twig with type III reconstruction at locations 13–16.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( m , n ) = p = 1 P I p ( m , n ) S p ( m , n )
S p ( m , n ) = δ p p o = 1 for p = p o ( m , n ) = 0 for p p o ( m , n ) .
S p ( m , n ) = 1 / P .
I ( m , n ) = p = 1 P I p ( m , n ) / P I p ( m , n ) ¯ .
I p ( m , n ) I p + 1 ( m , n ) I p + 2 ( m , n ) .
I p - 2 ( m , n ) I p - 1 ( m , n ) I p ( m , n ) .
I u ( m , n ) = maximum [ I 1 ( m , n ) , I 2 ( m , n ) , I 12 ( m , n ) ] .
I l ( m , n ) = minimum [ I 1 ( m , n ) , I 2 ( m , n ) , I 12 ( m , n ) ] .
Q ( m , n ) = I u ( m , n ) - I p ( m , n ) ¯ - I l ( m , n ) - I p ( m , n ) ¯ .
for Q ( m , n ) 0 p o ( m , n ) = u , for Q ( m , n ) < 0 p o ( m , n ) = l .
D p ( m , n ) = I p ( m - 1 , n + 1 ) - I p ( m + 1 , n - 1 ) + I p ( m + 1 , n + 1 ) - I p ( m - 1 , n - 1 ) + I p ( m , n + 1 ) - I p ( m , n - 1 ) + I p ( m - 1 , n ) - I p ( m + 1 , n ) .
D p o ( m , n ) = maximum [ D 1 ( m , n ) , D 2 ( m , n ) , D 12 ( m , n ) ] .
G M = maximum [ D p ( m , n ) : all m , n , p m = 1 to 32 , n = 1 to 128 , p = 1 to 12 ] .
X ( m , n ) = D p o ( m , n ) - α × G M ,
if X ( m , n ) 0 S p ( m , n ) = 1 / 12 form 2 , if X ( m , n ) > 0 S p ( m , n ) = δ p p o form 1 ,

Metrics