Abstract

Various linear combinations of simple matched spatial filters have been proposed in the literature to improve the discrimination in multiclass pattern recognition. It has been shown that all such approaches based on deterministic constraints can be modeled as similar matrix/vector problems, the only differences arising in the individual constraint vectors. Since the design of any of these linear combination filters (LCF) can be posed as a common matrix/vector problem, efficient iterative methods can be used to determine the LCFs. The application of one such method called the modified hyperplane (MHP) method for determining the LCF is described and its convergence behavior is numerically investigated for a set of seven patterns. It is shown that the MHP method yields correct LCFs (with rms error <0.1%) in less than ten iterations.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription