Abstract

A broadband white-light processing technique for smeared color photographic image deblurring is described. The technique utilizes a diffraction grating method to disperse the smeared image spectra in the Fourier plane so that the entire spectral band of the white-light source can be utilized for the deblurring. In this paper the technique of synthesizing a fan-shape type complex deblurring filter to accommodate wavelength variation is presented. Experimental results showed that this broad spectral band processing technique offers an excellent coherent artifact noise suppression, and the technique is particularly suitable for color image deblurring. Experimental demonstrations and comparisons with the narrowband and coherent deblurring are also provided.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tsujiuchi, Prog. Opt. 2, 133 (1963).
  2. G. W. Stroke, R. G. Zech, Phys. Lett. A 25, 89 (1967).
    [CrossRef]
  3. J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
    [CrossRef]
  4. J. L. Horner, J. Opt. Soc. Am. 59, 553 (1969).
    [CrossRef]
  5. J. L. Horner, Appl. Opt. 9, 167 (1970).
    [CrossRef] [PubMed]
  6. R. M. Vasu, G. L. Rogers, Appl. Opt. 19, 469 (1980).
    [CrossRef] [PubMed]
  7. G. G. Yang, E. N. Leith, Opt. Commun. 36, 101 (1981).
    [CrossRef]
  8. F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
    [CrossRef] [PubMed]
  9. S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 102 (1981).
    [CrossRef] [PubMed]
  10. F. T. S. Yu, S. L. Zhuang, T. H. Chao, J. Opt. (Paris) 13, 57 (1982).
    [CrossRef]
  11. S. L. Zhuang, F. T. S. Yu, Appl. Opt. 21, 2587 (1982).
    [CrossRef] [PubMed]
  12. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973), pp. 206–212.

1982

F. T. S. Yu, S. L. Zhuang, T. H. Chao, J. Opt. (Paris) 13, 57 (1982).
[CrossRef]

S. L. Zhuang, F. T. S. Yu, Appl. Opt. 21, 2587 (1982).
[CrossRef] [PubMed]

1981

1980

1978

1970

J. L. Horner, Appl. Opt. 9, 167 (1970).
[CrossRef] [PubMed]

J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
[CrossRef]

1969

1967

G. W. Stroke, R. G. Zech, Phys. Lett. A 25, 89 (1967).
[CrossRef]

1963

J. Tsujiuchi, Prog. Opt. 2, 133 (1963).

Chao, T. H.

F. T. S. Yu, S. L. Zhuang, T. H. Chao, J. Opt. (Paris) 13, 57 (1982).
[CrossRef]

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 102 (1981).
[CrossRef] [PubMed]

Fukaya, T.

J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
[CrossRef]

Honda, T.

J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
[CrossRef]

Horner, J. L.

Leith, E. N.

G. G. Yang, E. N. Leith, Opt. Commun. 36, 101 (1981).
[CrossRef]

Rogers, G. L.

Stroke, G. W.

G. W. Stroke, R. G. Zech, Phys. Lett. A 25, 89 (1967).
[CrossRef]

Tsujiuchi, J.

J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
[CrossRef]

J. Tsujiuchi, Prog. Opt. 2, 133 (1963).

Vasu, R. M.

Yang, G. G.

G. G. Yang, E. N. Leith, Opt. Commun. 36, 101 (1981).
[CrossRef]

Yu, F. T. S.

S. L. Zhuang, F. T. S. Yu, Appl. Opt. 21, 2587 (1982).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, J. Opt. (Paris) 13, 57 (1982).
[CrossRef]

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 102 (1981).
[CrossRef] [PubMed]

F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973), pp. 206–212.

Zech, R. G.

G. W. Stroke, R. G. Zech, Phys. Lett. A 25, 89 (1967).
[CrossRef]

Zhuang, S. L.

Appl. Opt.

J. Opt. (Paris)

F. T. S. Yu, S. L. Zhuang, T. H. Chao, J. Opt. (Paris) 13, 57 (1982).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

J. Tsujiuchi, T. Honda, T. Fukaya, Opt. Commun. 1, 379 (1970).
[CrossRef]

G. G. Yang, E. N. Leith, Opt. Commun. 36, 101 (1981).
[CrossRef]

Opt. Lett.

Phys. Lett. A

G. W. Stroke, R. G. Zech, Phys. Lett. A 25, 89 (1967).
[CrossRef]

Prog. Opt.

J. Tsujiuchi, Prog. Opt. 2, 133 (1963).

Other

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973), pp. 206–212.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

White-light processor for smeared color image deblurring: I, white-light point source; Ŝ(x,y), smeared color image transparency; T(x), diffraction grating; L1 and L2, achromatic transform lenses; H(α,β;λ), broad spectral band deblurring filter.

Fig. 2
Fig. 2

Plots of the deblurring width ΔW as a function of the spectral bandwidth of the light source Δλ for various values of smeared length W.

Fig. 3
Fig. 3

Plots of the deblurring width as a function of the source size for various values of the smeared length W.

Fig. 4
Fig. 4

Phase filter mask for MgF2 vapor deposition.

Fig. 5
Fig. 5

Generation of amplitude filter S monochromatic plane wave; CL, cylindrical transform lens.

Fig. 6
Fig. 6

Smeared image restoration of the words PENN STATE: (a) smeared image, (b) deblurred image obtained with broadband white-light source, (c) deblurred image obtained with narrow spectral band white-light source, and (d) deblurred image obtained with coherent source.

Fig. 7
Fig. 7

Continuous-tone color image deblurring: (a) a black-and-white picture of a smeared color photograph of a building, (b) a black-and-white picture of the deblurred color image.

Fig. 8
Fig. 8

Color image deblurring: (a) a black-and-white picture of a smeared color image of an F-16 fighter plane, (b) a black-and-white picture of the deblurred color image.

Tables (2)

Tables Icon

Table I Temporal Coherence Requirement for λ0 = 5461 Å

Tables Icon

Table II Effect of Spatial Coherence Requirement

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

s ^ ( x , y ) = s ( x , y ) * rect ( y W ) ,
rect ( y W ) 1 , y W 2 , 0 , otherwise ,
E ( α , β , λ ) = C s ^ ( x , y ; λ ) exp ( i p 0 x ) × exp [ - i 2 π λ f ( x α + y β ) ] d x d y ,
E ( α , β ; λ ) = C S ^ ( α - λ f 2 π p 0 , β ) ,
S ^ [ α - ( λ f / 2 π ) p 0 , β ] = S [ α - ( λ f 2 π ) p 0 , β ] sinc ( π W λ f β )
H ( α , β ; λ ) = δ ( α - λ f 2 π p 0 , β ) { [ rect ( y W ) exp ( - i 2 π λ f β y ) ] d y } - 1 , = δ ( α - λ f 2 π p 0 , β ) [ sinc ( π W λ f β ) ] - 1 .
g ( x , y ; λ ) = F - 1 [ S ( α - λ f 2 π p 0 , β ) H ( α , β ; λ ) ] ,
g ( x , y ; λ ) = s ( x , y ) exp ( i p 0 x ) ,
I ( x , y ) = Δ λ g ( x , y ; λ ) 2 d λ Δ λ s ( x , y ) 2 ,
Δ λ = λ 0 [ 4 Δ p / p 0 ] , p 0 Δ p ,
Δ p p 0 = Δ λ 4 λ 0 ,
d = λ 2 ( n - 1 ) ,
d ( x , y ; λ ) = rect ( y W λ 0 / λ ) δ ( x - λ f 2 π p 0 ) ,
D ( α , β ; λ ) = sinc ( π W λ f β ) * δ ( α - λ f 2 π p 0 ) ,

Metrics