Abstract

A laboratory experiment is discussed which simulates lidar fluorosensing of oil films on the sea surface at UV wavelengths. Three different mixtures of lasing gases, KrF, XeCl and N2, were used while a fourth wavelength was given by a dye laser. It turns out that films having a thickness as low as 0.01 μm can be detected; the limiting factor resides mainly in the background fluorescence of water. Best results have been obtained with the XeCl excimer laser.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).
  2. J. Luther, “Lasersondierung des Meers,” in Optoelectronik in der TechnikW. Waidelich, Ed. (Springer, Berlin, 1982).
  3. F. E. Hoge, R. N. Swift: Appl. Opt. 19, 3269 (1980).
    [CrossRef] [PubMed]
  4. W. R. Houston, D. G. Stephenson, R. M. Measures, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).
  5. R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).
  6. R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
    [CrossRef] [PubMed]
  7. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
    [CrossRef]
  8. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, Appl. Opt. 17, 3798 (1978).
    [CrossRef] [PubMed]
  9. F. E. Hoge, J. S. Kincaid, Appl. Opt. 19, 1143 (1980).
    [CrossRef] [PubMed]
  10. F. E. Hoge, Appl. Opt. 21, 1725 (1982).
    [CrossRef] [PubMed]
  11. H. Visser, Appl. Opt. 18, 1746 (1979).
    [CrossRef] [PubMed]
  12. R. C. Smith, K. S. Baker, Appl. Opt. 20, 177 (1981).
    [CrossRef] [PubMed]

1982 (1)

1981 (1)

1980 (3)

1979 (1)

1978 (1)

1976 (1)

Baker, K. S.

Buja-Bijunas, L.

Davis, A. R.

R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Gross, H. G.

R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Hoge, F. E.

Houston, W. R.

W. R. Houston, D. G. Stephenson, R. M. Measures, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Itzkan, I.

Kakui, Y.

Kashiwagi, H.

Kincaid, J. S.

Kruns, J.

R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Kung, R. T. V.

Luther, J.

J. Luther, “Lasersondierung des Meers,” in Optoelectronik in der TechnikW. Waidelich, Ed. (Springer, Berlin, 1982).

Measures, R. M.

W. R. Houston, D. G. Stephenson, R. M. Measures, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Nanjo, M.

O’Neil, R. A.

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
[CrossRef]

R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Rayner, D. M.

Sato, T.

Smith, R. C.

Stephenson, D. G.

W. R. Houston, D. G. Stephenson, R. M. Measures, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

Suzuki, Y.

Swift, R. N.

Visser, H.

Appl. Opt. (8)

Other (4)

W. R. Houston, D. G. Stephenson, R. M. Measures, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

R. A. O’Neil, A. R. Davis, H. G. Gross, J. Kruns, in “Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

“Symposium on the Use of Lasers for Hydrographic Studies,” NASA Spec. Publ. 375 (1973).

J. Luther, “Lasersondierung des Meers,” in Optoelectronik in der TechnikW. Waidelich, Ed. (Springer, Berlin, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generic situation for a schematic Lidar located at an altitude H over the sea surface; L is the oil layer thickness.

Fig. 2
Fig. 2

Block diagram of the experimental apparatus. Four different laser wavelengths were used for the fluorescence excitation of some samples of crude oil. Fluorescence light is collected by the mirror M2 focused by L on the input slit S of the monochromator, and then detected by the OMA-2 system.

Fig. 3
Fig. 3

Emission spectra of five different crude oil samples at four excitation wavelengths.

Fig. 4
Fig. 4

Fluorescence spectra of Russian crude oil for five different thicknesses. At this excitation wavelength (308 nm) the oil layer has an absorption length of 10 μm.

Fig. 5
Fig. 5

Fluorescence intensity at emission peak wavelength vs oil film thickness for different excitation wavelengths. Asterisks are for the 420-nm excitation, squares for the 337.1 nm, triangles for the 308 nm, and circles for the 249.5-nm excitation.

Fig. 6
Fig. 6

Fluorescence intensity at oil emission peak wavelength vs oil film thickness. Continued line is the calculated seawater fluorescence, circles are the measured oil film fluorescence, squares are for the D parameter mentioned in Eq. (7); λ = 308 nm is the considered excitation wavelength.

Tables (2)

Tables Icon

Table I Main Characteristics of the Laser Used in Laboratory Experiments Built as a Part of the Finalized Program on High Power Lasers

Tables Icon

Table II Main Characteristics of the Five Crude Oil Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N ( λ o , λ f ) = N oil ( λ o , λ f ) + N w ( λ o , λ f ) ,
N oil ( λ o f ) = C k o η oil ( λ o f ) k o + k f { 1 exp [ ( k o + k f ) L ] } ,
N w ( λ o f ) = C a o η w ( λ o f ) α o + α f exp [ ( k o + k f ) L ] ,
C = r 2 N o T o 2 4 H 2 ,
D = N ( λ o , λ f ) N w o ( λ o , λ f ) N w o ( λ o , λ f ) .

Metrics