Abstract

Recent theoretical work has shown conceptual feasibility for the airborne measurement of the absolute oil fluorescence spectral conversion efficiency (AOFSCE) of crude and refined petroleum oils on the ocean surface without a priori knowledge of the film thickness. Reported herein are airborne lidar oil spill experiments conducted to determine the practical feasibility of the AOFSCE computational model. The results of these investigations demonstrate that the AOFSCE model is practical over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency have also been conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. The AOFSCE model shows excellent potential, however, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are required for final feasibility determination.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Myers, C. G. Gunnerson, “Hydrocarbons in the Oceans,” NOAA Marine Ecosystems (MESA) Analysis Program Special Report, Boulder, Colo., Apr.1976.
  2. O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).
  3. D. M. Rayner, A. G. Szabo, “A Study of the Potential of Time-Resolved Laser Fluorosensors,” Report BY-76-2 (RC), National Research Council of Canada, Ottawa, Canada, Nov.1976.
  4. H. Visser, Appl. Opt. 18, 1746 (1979).
    [CrossRef] [PubMed]
  5. J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills,” in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, 15-19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), Vol. 3, pp. 1711–1745.
  6. J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification of Spills,” Final Report CG-D-86-75, U.S. Department of Transportation, Cambridge, Mass., Feb.1975.
  7. R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor, Oct.1971.
  8. R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
    [CrossRef] [PubMed]
  9. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
    [CrossRef]
  10. H. H. Zwick, R. A. Neville, R. A. O’Neil, “A Recommended Sensor Package for the Detection and Tracking of Oil Spills,” in Proceedings, EARSeL-ESA Symposium, NOSS, Norway, 19–20 May 1981 (ESA Publication, Application of Remote Sensing Data on the Continental Shelf, SP-167, July1981).
  11. R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
    [CrossRef]
  12. J. G. Shannon, SPIE J. 64, 3 (1975).
    [CrossRef]
  13. G. S. Ofelt, “Relationship Between Beam and Diffuse Attenuation Coefficients in the Lower Chesapeake Bay Area,” Technical Report 32, prepared by Old Dominion U., Norfolk, Va. under Master Contract Agreement NAS1-14193 for NASA Langley Research Center, Oct.1976.
  14. H. R. Gordon, A. W. Wouters, Appl. Opt. 17, 3341 (1978).
    [CrossRef] [PubMed]
  15. M. Bristow, D. Nielsen, D. Bundy, R. Furtek, Appl. Opt. 20, 2889 (1981).
    [CrossRef] [PubMed]
  16. R. W. L. Thomas, G. C. Guenther, “Theoretical Characterization of Bottom Returns for Bathymetric Lidar”,” in Proceedings, International Conference on Lasers ’78, Society of Optics and Quantum Electronics, Orlando, Fla.11–15 Dec. 1978.
  17. H. R. Gordon, Appl. Opt. 21, 2996 (1982).
    [CrossRef] [PubMed]
  18. L. R. Poole, W. E. Esaias, Appl. Opt. 21, 3756 (1982).
    [CrossRef] [PubMed]
  19. R. B. Slusher, V. E. Derr, Appl. Opt. 14, 2116 (1975).
    [CrossRef] [PubMed]
  20. C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Final Technical Report, Contract N62269-72-C-0204, Advanced Research Projects Agency Order 1911 to Avco Everett Research Laboratory, Everett, Mass. (July1972).
  21. F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
    [CrossRef] [PubMed]
  22. F. E. Hoge, R. N. Swift, Appl. Opt. 20, 1191 (1981).
    [CrossRef] [PubMed]
  23. F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  24. F. E. Hoge, R. N. Swift “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll a and Other Organic Pigments,” in NASA Conference Publication 2188, NOAA/NEMP III 81-ABCDFG0042, Chesapeake Bay Plume Study (Superflux 1980), J. W. Campbell, J. P. Thomas, Eds., Jan.1981.
  25. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  26. C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
    [CrossRef] [PubMed]
  27. W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
    [CrossRef]
  28. W. B. Krabill, NASA; personal communication; paper in preparation for publication as NASA Technical Memorandum.
  29. P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
    [CrossRef]
  30. A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
    [CrossRef]
  31. J. M. Mendel, IEEE Trans. Geosci. Remote Sensing, GE-19, 161 (1981).
    [CrossRef]
  32. J. A. Irvin, T. I. Quickenden, Rev. Sci. Instrum. 52, 191 (1981).
    [CrossRef]

1982 (2)

1981 (5)

1980 (4)

1979 (1)

1978 (1)

1977 (2)

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
[CrossRef]

1976 (1)

1975 (2)

1974 (1)

P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
[CrossRef]

1970 (1)

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

Abramov, O. I.

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

Auchet, J. C.

P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
[CrossRef]

Bristow, M.

Buja-Bijunas, L.

Bundy, D.

Caneveri, G. P.

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

Chang, C. H.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Final Technical Report, Contract N62269-72-C-0204, Advanced Research Projects Agency Order 1911 to Avco Everett Research Laboratory, Everett, Mass. (July1972).

Croswell, W. F.

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

Derr, V. E.

Donzel, B.

P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
[CrossRef]

Esaias, W. E.

Fantasia, J. F.

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills,” in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, 15-19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), Vol. 3, pp. 1711–1745.

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification of Spills,” Final Report CG-D-86-75, U.S. Department of Transportation, Cambridge, Mass., Feb.1975.

Fedors, J. C.

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

Frederick, E. B.

Furtek, R.

Gordon, H. R.

Green, S. H.

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

Guenther, G. C.

R. W. L. Thomas, G. C. Guenther, “Theoretical Characterization of Bottom Returns for Bathymetric Lidar”,” in Proceedings, International Conference on Lasers ’78, Society of Optics and Quantum Electronics, Orlando, Fla.11–15 Dec. 1978.

Gunnerson, C. G.

E. P. Myers, C. G. Gunnerson, “Hydrocarbons in the Oceans,” NOAA Marine Ecosystems (MESA) Analysis Program Special Report, Boulder, Colo., Apr.1976.

Hoge, F. E.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 1191 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll a and Other Organic Pigments,” in NASA Conference Publication 2188, NOAA/NEMP III 81-ABCDFG0042, Chesapeake Bay Plume Study (Superflux 1980), J. W. Campbell, J. P. Thomas, Eds., Jan.1981.

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

Holmes, R. W.

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

Horvath, R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor, Oct.1971.

Ingrao, H. C.

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification of Spills,” Final Report CG-D-86-75, U.S. Department of Transportation, Cambridge, Mass., Feb.1975.

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills,” in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, 15-19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), Vol. 3, pp. 1711–1745.

Irvin, J. A.

J. A. Irvin, T. I. Quickenden, Rev. Sci. Instrum. 52, 191 (1981).
[CrossRef]

Itzkan, I.

Johnson, J. C.

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

Krabill, W. B.

W. B. Krabill, NASA; personal communication; paper in preparation for publication as NASA Technical Memorandum.

Kung, R. T. V.

Lobov, L. I.

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

McAuliffe, C. D.

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

McKinnon, A. E.

A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
[CrossRef]

Mendel, J. M.

J. M. Mendel, IEEE Trans. Geosci. Remote Sensing, GE-19, 161 (1981).
[CrossRef]

Miller, D. R.

A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
[CrossRef]

Morgan, W. L.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor, Oct.1971.

Myers, E. P.

E. P. Myers, C. G. Gunnerson, “Hydrocarbons in the Oceans,” NOAA Marine Ecosystems (MESA) Analysis Program Special Report, Boulder, Colo., Apr.1976.

Neville, R. A.

H. H. Zwick, R. A. Neville, R. A. O’Neil, “A Recommended Sensor Package for the Detection and Tracking of Oil Spills,” in Proceedings, EARSeL-ESA Symposium, NOSS, Norway, 19–20 May 1981 (ESA Publication, Application of Remote Sensing Data on the Continental Shelf, SP-167, July1981).

Nielsen, D.

O’Neil, R. A.

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
[CrossRef]

H. H. Zwick, R. A. Neville, R. A. O’Neil, “A Recommended Sensor Package for the Detection and Tracking of Oil Spills,” in Proceedings, EARSeL-ESA Symposium, NOSS, Norway, 19–20 May 1981 (ESA Publication, Application of Remote Sensing Data on the Continental Shelf, SP-167, July1981).

Ofelt, G. S.

G. S. Ofelt, “Relationship Between Beam and Diffuse Attenuation Coefficients in the Lower Chesapeake Bay Area,” Technical Report 32, prepared by Old Dominion U., Norfolk, Va. under Master Contract Agreement NAS1-14193 for NASA Langley Research Center, Oct.1976.

Polovinko, V. V.

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

Poole, L. R.

Quickenden, T. I.

J. A. Irvin, T. I. Quickenden, Rev. Sci. Instrum. 52, 191 (1981).
[CrossRef]

Rayner, D. M.

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
[CrossRef]

D. M. Rayner, A. G. Szabo, “A Study of the Potential of Time-Resolved Laser Fluorosensors,” Report BY-76-2 (RC), National Research Council of Canada, Ottawa, Canada, Nov.1976.

Searl, T. D.

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

Shannon, J. G.

J. G. Shannon, SPIE J. 64, 3 (1975).
[CrossRef]

Slusher, R. B.

Stewart, S. R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor, Oct.1971.

Swift, R. N.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 1191 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll a and Other Organic Pigments,” in NASA Conference Publication 2188, NOAA/NEMP III 81-ABCDFG0042, Chesapeake Bay Plume Study (Superflux 1980), J. W. Campbell, J. P. Thomas, Eds., Jan.1981.

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

Szabo, A. G.

A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
[CrossRef]

D. M. Rayner, A. G. Szabo, “A Study of the Potential of Time-Resolved Laser Fluorosensors,” Report BY-76-2 (RC), National Research Council of Canada, Ottawa, Canada, Nov.1976.

Thomas, R. W. L.

R. W. L. Thomas, G. C. Guenther, “Theoretical Characterization of Bottom Returns for Bathymetric Lidar”,” in Proceedings, International Conference on Lasers ’78, Society of Optics and Quantum Electronics, Orlando, Fla.11–15 Dec. 1978.

Visser, H.

Wahl, P.

P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
[CrossRef]

Wouters, A. W.

Yeremin, V. I.

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

Young, L. A.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Final Technical Report, Contract N62269-72-C-0204, Advanced Research Projects Agency Order 1911 to Avco Everett Research Laboratory, Everett, Mass. (July1972).

Zwick, H. H.

H. H. Zwick, R. A. Neville, R. A. O’Neil, “A Recommended Sensor Package for the Detection and Tracking of Oil Spills,” in Proceedings, EARSeL-ESA Symposium, NOSS, Norway, 19–20 May 1981 (ESA Publication, Application of Remote Sensing Data on the Continental Shelf, SP-167, July1981).

Appl. Opt. (12)

Environ. Sci. Technol. (1)

C. D. McAuliffe, J. C. Johnson, S. H. Green, G. P. Caneveri, T. D. Searl, Environ. Sci. Technol. 14, 1509 (1980).
[CrossRef] [PubMed]

IEEE Trans. Geosci. Remote Sensing (1)

J. M. Mendel, IEEE Trans. Geosci. Remote Sensing, GE-19, 161 (1981).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

O. I. Abramov, V. I. Yeremin, L. I. Lobov, V. V. Polovinko, Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 13, 232 (1977).

J. Phys. Chem. (1)

A. E. McKinnon, A. G. Szabo, D. R. Miller, J. Phys. Chem. 81, 1564 (1977).
[CrossRef]

Limnol. Oceanogr. (1)

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

J. A. Irvin, T. I. Quickenden, Rev. Sci. Instrum. 52, 191 (1981).
[CrossRef]

P. Wahl, J. C. Auchet, B. Donzel, Rev. Sci. Instrum. 45, 28 (1974).
[CrossRef]

SPIE J. (1)

J. G. Shannon, SPIE J. 64, 3 (1975).
[CrossRef]

Other (12)

G. S. Ofelt, “Relationship Between Beam and Diffuse Attenuation Coefficients in the Lower Chesapeake Bay Area,” Technical Report 32, prepared by Old Dominion U., Norfolk, Va. under Master Contract Agreement NAS1-14193 for NASA Langley Research Center, Oct.1976.

R. W. L. Thomas, G. C. Guenther, “Theoretical Characterization of Bottom Returns for Bathymetric Lidar”,” in Proceedings, International Conference on Lasers ’78, Society of Optics and Quantum Electronics, Orlando, Fla.11–15 Dec. 1978.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Final Technical Report, Contract N62269-72-C-0204, Advanced Research Projects Agency Order 1911 to Avco Everett Research Laboratory, Everett, Mass. (July1972).

D. M. Rayner, A. G. Szabo, “A Study of the Potential of Time-Resolved Laser Fluorosensors,” Report BY-76-2 (RC), National Research Council of Canada, Ottawa, Canada, Nov.1976.

H. H. Zwick, R. A. Neville, R. A. O’Neil, “A Recommended Sensor Package for the Detection and Tracking of Oil Spills,” in Proceedings, EARSeL-ESA Symposium, NOSS, Norway, 19–20 May 1981 (ESA Publication, Application of Remote Sensing Data on the Continental Shelf, SP-167, July1981).

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills,” in Proceedings, Ninth International Symposium on Remote Sensing of the Environment, 15-19 Apr. 1974 (Environmental Research Institute of Michigan, Ann Arbor, 1974), Vol. 3, pp. 1711–1745.

J. F. Fantasia, H. C. Ingrao, “The Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification of Spills,” Final Report CG-D-86-75, U.S. Department of Transportation, Cambridge, Mass., Feb.1975.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Project 724104.2/1, Willow Run Laboratories, U. Michigan, Ann Arbor, Oct.1971.

E. P. Myers, C. G. Gunnerson, “Hydrocarbons in the Oceans,” NOAA Marine Ecosystems (MESA) Analysis Program Special Report, Boulder, Colo., Apr.1976.

W. F. Croswell, J. C. Fedors, F. E. Hoge, R. N. Swift, J. C. Johnson, “Ocean Experiments and Remotely Sensed Images of Chemically Dispersed Oil Spills,” IEEE Trans. Geosci. Remote SensingGE-21, No. 1, (1983), accepted for publication.
[CrossRef]

W. B. Krabill, NASA; personal communication; paper in preparation for publication as NASA Technical Memorandum.

F. E. Hoge, R. N. Swift “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll a and Other Organic Pigments,” in NASA Conference Publication 2188, NOAA/NEMP III 81-ABCDFG0042, Chesapeake Bay Plume Study (Superflux 1980), J. W. Campbell, J. P. Thomas, Eds., Jan.1981.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Theoretical or expected laser-induced fluorescence spectral waveforms over (A) ocean water covered by an optically thin oil film and (B) ocean water. (b) Spectral waveform of ocean water normalized by water Raman backscatter R.

Fig. 2
Fig. 2

(a) Water Raman backscatter and (b) oil fluorescence signals obtained over the LaRosa oil slick. (c) The computed thickness using the data in (a) and the extinction coefficients from Table III.

Fig. 3
Fig. 3

(a) Water Raman backscatter and (b) oil fluorescence signals obtained over the Murban oil slick. (c) The computed thickness using the data in (a) and the extinction coefficients from Table III.

Fig. 4
Fig. 4

High correlation of water Raman backscatter with sea surface elevation. The spatial phase lag of the Raman is evident but more easily seen at A. The correlation persists even over the ocean surface region covered by the oil slick.

Fig. 5
Fig. 5

(a) Oil fluorescence conversion efficiency of Murban crude oil as a function of the film thickness. (b) Oil fluorescence conversion efficiency of LaRosa crude oil as a function of the film thickness.

Fig. 6
Fig. 6

Relative oil fluorescence conversion efficiency of Murban and LaRosa crudes as measured in the laboratory. An airborne system detection sensitivity level denoted as A in the figure will account for the apparent difference in conversion efficiency as measured in the field.

Fig. 7
Fig. 7

High correlation between the depth-resolved water Raman and the sea surface elevation. The sea surface is derived from range data obtained from the leading edge of the depth-resolved water Raman return pulse.

Fig. 8
Fig. 8

(a) Depth-resolved water Raman backscatter data at 493.5 nm obtained during field experiments on Nantucket Shoals. (b) System temporal response calibration data at 422.6 nm obtained from a flat target immediately following the flight mission.

Tables (3)

Tables Icon

Table I AOL Operating Parameters

Tables Icon

Table II Experiment and Data Summary

Tables Icon

Table III Spilled Oil Types and Selected Physical Characteristics

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η f = ( σ N w T e T r α e + α r ) · ( θ f 1 Δ r 1 + ) · ( 1 Δ r 1 + Ξ f ) ,
= κ f κ r κ e + κ r ,
ψ = σ N w T e T r ( α e + α r ) .
α e + α r = σ τ 2 n ,
1.44 Z D = 0.2 α + 0.04 ,
α = 7.2 Z s 0.2.
ψ = σ N w T e T r 2 ( 7.2 Z s 0.2 ) .
σ 337 = σ 488 ( ν 337 ν ν 488 ν ) 4 ,
σ 337 = ( 5.531 ) σ 488 .
d = 1 κ e + κ r ln ( R R ) .

Metrics