Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cauchois, C. R. Acad. Sci. 242, 100 (1956); Y. Cauchois, C. Bonnelle, C. R. Acad. Sci. 242, 1596 (1956).
  2. A. Burek, Space Sci. Inst. 2, 53 (1976).
  3. Y. Heno, C. R. Acad. Sci. 242, 1599 (1956).
  4. R. Barchewitz, Doctorat Thesis (1977) (unpublished); J. M. André, Doctorat Thesis (1981) (unpublished).
  5. J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).
  6. R. W. James, Optical Principles of the Diffraction of X rays (Bell, London, 1948).
  7. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
    [CrossRef]
  8. J. H. Underwood, T. W. Barbee, Appl. Opt. 20, 3027 (1981).
    [CrossRef] [PubMed]
  9. L. G. Parratt, Phys. Rev. 95, 359 (1954).
    [CrossRef]
  10. A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).
  11. A. E. Rosenbluth, J. M. Forsyth, “Low Energy X-ray Diagnostics,” in AIP Conf. Proc. 75, P. T. Attwood, B. L. Henke, Eds. (AIP, New York, 1981).
  12. The terms refers in this case to the coherent absorption; i.e., only the real part of the scattering factor is involved.
  13. W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, New York, 1945).

1982

J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

1981

1976

A. Burek, Space Sci. Inst. 2, 53 (1976).

1956

Y. Heno, C. R. Acad. Sci. 242, 1599 (1956).

Y. Cauchois, C. R. Acad. Sci. 242, 100 (1956); Y. Cauchois, C. Bonnelle, C. R. Acad. Sci. 242, 1596 (1956).

1954

L. G. Parratt, Phys. Rev. 95, 359 (1954).
[CrossRef]

André, J. M.

J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).

A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).

Barbee, T. W.

Barchewitz, R.

J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).

R. Barchewitz, Doctorat Thesis (1977) (unpublished); J. M. André, Doctorat Thesis (1981) (unpublished).

A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).

Burek, A.

A. Burek, Space Sci. Inst. 2, 53 (1976).

Cauchois, Y.

Y. Cauchois, C. R. Acad. Sci. 242, 100 (1956); Y. Cauchois, C. Bonnelle, C. R. Acad. Sci. 242, 1596 (1956).

Forsyth, J. M.

A. E. Rosenbluth, J. M. Forsyth, “Low Energy X-ray Diagnostics,” in AIP Conf. Proc. 75, P. T. Attwood, B. L. Henke, Eds. (AIP, New York, 1981).

Fujikawa, R. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

Heno, Y.

Y. Heno, C. R. Acad. Sci. 242, 1599 (1956).

James, R. W.

R. W. James, Optical Principles of the Diffraction of X rays (Bell, London, 1948).

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

Maquet, A.

J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).

A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).

Marmoret, R.

A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).

Parratt, L. G.

L. G. Parratt, Phys. Rev. 95, 359 (1954).
[CrossRef]

Rosenbluth, A. E.

A. E. Rosenbluth, J. M. Forsyth, “Low Energy X-ray Diagnostics,” in AIP Conf. Proc. 75, P. T. Attwood, B. L. Henke, Eds. (AIP, New York, 1981).

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

Underwood, J. H.

Zachariasen, W. H.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, New York, 1945).

Appl. Opt.

At. Data Nucl. Data Tables

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, At. Data Nucl. Data Tables 27 No. (1) (1982).
[CrossRef]

C. R. Acad. Sci.

Y. Cauchois, C. R. Acad. Sci. 242, 100 (1956); Y. Cauchois, C. Bonnelle, C. R. Acad. Sci. 242, 1596 (1956).

Y. Heno, C. R. Acad. Sci. 242, 1599 (1956).

Phys. B

J. M. André, A. Maquet, R. Barchewitz, Phys. B 25, 5671 (1982).

Phys. Rev.

L. G. Parratt, Phys. Rev. 95, 359 (1954).
[CrossRef]

Space Sci. Inst.

A. Burek, Space Sci. Inst. 2, 53 (1976).

Other

R. Barchewitz, Doctorat Thesis (1977) (unpublished); J. M. André, Doctorat Thesis (1981) (unpublished).

A. Maquet, R. Barchewitz, R. Marmoret, J. M. André, Phys. Rev. B (to be published).

A. E. Rosenbluth, J. M. Forsyth, “Low Energy X-ray Diagnostics,” in AIP Conf. Proc. 75, P. T. Attwood, B. L. Henke, Eds. (AIP, New York, 1981).

The terms refers in this case to the coherent absorption; i.e., only the real part of the scattering factor is involved.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, New York, 1945).

R. W. James, Optical Principles of the Diffraction of X rays (Bell, London, 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Computed reflectivity curve vs Bragg angle of a typical WC LSM for various energy values in the CK absorption range: (1) 550, (2) 505, (3) 461, (4) 417, (5) 372, (6) 328, (7) 283, (8) 234, (9) 195, (10) 150 eV. Only the first-order Bragg peak is figured. The LSM consists of fifteen WC layer pairs with dW = 24.3 Å and dC = 33.4 Å. The radiation is σ-polarized.

Fig. 2
Fig. 2

First-order reflectivity spectrum of a typical WC LSM in the CK absorption region. The characteristics of the LSM are those indicated in Fig. 1. The computation procedure is explained in the text.

Fig. 3
Fig. 3

Computed reflectivity curve vs Bragg angle of a typical WC LSM for various energy values in the WM4,5 absorption regions: (1) 1500, (2) 1655, (3) 1813, (4) 1880, (5) 2045, and (6) 2200 eV. Same comments as in Fig. 1.

Fig. 4
Fig. 4

First-order reflectivity spectrum of a typical WC LSM in the WM4,5 absorption regions. The characteristics of the LSM and the radiation are those indicated in Fig. 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R I k = ( k th Bragg peak ) R ( θ ) d ( θ θ B k ) .
n * ( ω ) = 1 2 · ( c ω ) 2 · r e M · f * ( ω ) ,
ϕ c = N · r e · ( f c 2 + f c 2 ) 1 / 2 ,

Metrics