Abstract

Oxide films ranging in thickness from less than a hundred angstroms to several thousand angstroms may be deposited from clear solutions derived from metal-organic compounds. These solutions contain oxide constitutents in a soluble polymerized form and deposit a glasslike film upon application on substrates. A bake temperature of 300–500°C is required to reduce these film into a pure oxide state. The properties of the resultant oxide films are process dependent. In this paper, parameters that affect the optical properties of oxide films deposited from polymerized solution are identified, and their specific effects are described. The parameters include: type of solution; nature of substrate; drying conditions; and heat treatment atmosphere and temperature.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Tanner, L. B. Lockhart, J. Opt. Soc. Am. 36, 701 (1946).
    [CrossRef]
  2. H. Schroeder, Opt. Acta 9, 249 (1962).
    [CrossRef]
  3. H. Schroeder, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5, p. 87.
  4. H. Dislich, Angew. Chem., Int. Ed. Eng. 10, 363 (1971).
    [CrossRef]
  5. B. E. Yoldas, J. Mater. Sci. 14, 1843 (1979).
    [CrossRef]
  6. B. E. Yoldas, J. Non Cryst. Solids 38 & 39, 81 (1980).
    [CrossRef]
  7. B. E. Yoldas, T. W. O’Keeffe, Appl. Opt. 18, 3133 (1979).
    [CrossRef] [PubMed]
  8. B. E. Yoldas, Appl. Opt. 19, 1425 (1980).
    [CrossRef] [PubMed]
  9. R. W. Phillips, J. W. Dodds, Appl. Opt. 20, 40 (1981).
    [CrossRef] [PubMed]
  10. C. J. Brinker, S. P. Mukherjee, in Proceedings, International Seminar, Geneva, Switzerland, 18–20, Sept. 1980, R. Puyané, Ed. (Elsevier Sequoia S.A., New York, 1981).
  11. B. E. Yoldas, J. Non Cryst. Solids. in press.
  12. W. H. Lowdermilk, Lawrence Livermore Laboratory; private communications.

1981 (1)

1980 (2)

B. E. Yoldas, Appl. Opt. 19, 1425 (1980).
[CrossRef] [PubMed]

B. E. Yoldas, J. Non Cryst. Solids 38 & 39, 81 (1980).
[CrossRef]

1979 (2)

1971 (1)

H. Dislich, Angew. Chem., Int. Ed. Eng. 10, 363 (1971).
[CrossRef]

1962 (1)

H. Schroeder, Opt. Acta 9, 249 (1962).
[CrossRef]

1946 (1)

Brinker, C. J.

C. J. Brinker, S. P. Mukherjee, in Proceedings, International Seminar, Geneva, Switzerland, 18–20, Sept. 1980, R. Puyané, Ed. (Elsevier Sequoia S.A., New York, 1981).

Dislich, H.

H. Dislich, Angew. Chem., Int. Ed. Eng. 10, 363 (1971).
[CrossRef]

Dodds, J. W.

Lockhart, L. B.

Lowdermilk, W. H.

W. H. Lowdermilk, Lawrence Livermore Laboratory; private communications.

Mukherjee, S. P.

C. J. Brinker, S. P. Mukherjee, in Proceedings, International Seminar, Geneva, Switzerland, 18–20, Sept. 1980, R. Puyané, Ed. (Elsevier Sequoia S.A., New York, 1981).

O’Keeffe, T. W.

Phillips, R. W.

Schroeder, H.

H. Schroeder, Opt. Acta 9, 249 (1962).
[CrossRef]

H. Schroeder, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5, p. 87.

Tanner, H. A.

Yoldas, B. E.

B. E. Yoldas, Appl. Opt. 19, 1425 (1980).
[CrossRef] [PubMed]

B. E. Yoldas, J. Non Cryst. Solids 38 & 39, 81 (1980).
[CrossRef]

B. E. Yoldas, T. W. O’Keeffe, Appl. Opt. 18, 3133 (1979).
[CrossRef] [PubMed]

B. E. Yoldas, J. Mater. Sci. 14, 1843 (1979).
[CrossRef]

B. E. Yoldas, J. Non Cryst. Solids. in press.

Angew. Chem., Int. Ed. Eng. (1)

H. Dislich, Angew. Chem., Int. Ed. Eng. 10, 363 (1971).
[CrossRef]

Appl. Opt. (3)

J. Mater. Sci. (1)

B. E. Yoldas, J. Mater. Sci. 14, 1843 (1979).
[CrossRef]

J. Non Cryst. Solids (1)

B. E. Yoldas, J. Non Cryst. Solids 38 & 39, 81 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

H. Schroeder, Opt. Acta 9, 249 (1962).
[CrossRef]

Other (4)

H. Schroeder, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1969), Vol. 5, p. 87.

C. J. Brinker, S. P. Mukherjee, in Proceedings, International Seminar, Geneva, Switzerland, 18–20, Sept. 1980, R. Puyané, Ed. (Elsevier Sequoia S.A., New York, 1981).

B. E. Yoldas, J. Non Cryst. Solids. in press.

W. H. Lowdermilk, Lawrence Livermore Laboratory; private communications.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Thickness of TiO2 films deposited on silicon wafers as a function of solution concentration and spin rate [2-mole H2O hydrolyzed Ti(OC2H5)4 in ethanol].

Fig. 2
Fig. 2

Comparison of relative absorbance of TiO2 produced by, A, 2-mol and, B, 15-mol H2O hydrolysis of Ti(OC2H5)4 (500°C air bake, KBr pellets).

Fig. 3
Fig. 3

Effect of hydrolysis and concentration on the viscosity of the solutions in a TiO2 system.

Fig. 4
Fig. 4

Effect on film thickness of partial replacement of ethanol by t-butanol.

Fig. 5
Fig. 5

Effect of bake temperature and bake atmosphere on the refractive index of TiO2 films deposited on silicon wafers (500 Å thick).

Fig. 6
Fig. 6

Effect of substrate on the refractive index of TiO2 films deposited on soda-lime glass and quartz.

Fig. 7
Fig. 7

Effect of film thickness on refractive index of TiO2 films deposited on quartz.

Fig. 8
Fig. 8

A 200-Å silver film deposited on glass and covered with an rf-sputtered TiO2 ~200 Å thick film is discolored upon exposure to air for several days (A), whereas no discoloration occurs when the TiO2 film is deposited from a polymerized solution and baked in vacuum (B).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ti - OH + RO - Ti Ti - O - Ti + ROH .
Ti - OH + HO - Ti high temp . vacuum Ti - O - Ti + H 2 O .

Metrics