Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).
  2. D. Marcuse, Bell Syst. Tech. J. 50, 2551 (1971).
  3. E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975); IEEE J. Quantum Electron. QE-12, 371 (1976).
    [CrossRef]
  4. S. Kawakami, M. Miyagi, S. Nishida, Appl. Opt. 14, 2588 (1975); Appl. Opt. 15, 1681 (1976).
    [CrossRef] [PubMed]
  5. Y. Takuma, M. Miyagi, S. Kawakami, Appl. Opt. 20, 2291 (1981).
    [CrossRef] [PubMed]
  6. H. Krammer, Appl. Opt. 17, 316 (1978).
    [CrossRef] [PubMed]
  7. M. Miyagi, Appl. Opt. 20, 1221 (1981).
    [CrossRef] [PubMed]
  8. V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

1981 (2)

1978 (1)

1975 (2)

S. Kawakami, M. Miyagi, S. Nishida, Appl. Opt. 14, 2588 (1975); Appl. Opt. 15, 1681 (1976).
[CrossRef] [PubMed]

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975); IEEE J. Quantum Electron. QE-12, 371 (1976).
[CrossRef]

1974 (1)

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

1971 (1)

D. Marcuse, Bell Syst. Tech. J. 50, 2551 (1971).

1969 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

Chang, D. C.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975); IEEE J. Quantum Electron. QE-12, 371 (1976).
[CrossRef]

Kawakami, S.

Krammer, H.

Kuester, E. F.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975); IEEE J. Quantum Electron. QE-12, 371 (1976).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 50, 2551 (1971).

Miyagi, M.

Nishida, S.

Ramaswamy, V.

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

Takuma, Y.

Appl. Opt. (4)

Bell Syst. Tech. J. (3)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

D. Marcuse, Bell Syst. Tech. J. 50, 2551 (1971).

V. Ramaswamy, Bell Syst. Tech. J. 53, 697 (1974).

IEEE J. Quantum Electron. (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975); IEEE J. Quantum Electron. QE-12, 371 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the fabricated waveguide by the electron beam technique.

Fig. 2
Fig. 2

Three-dimensional waveguide (a) and transformed 2-D waveguide (b), where Δd and Δn are the decrement of the thickness and increment of the refractive index of the PMMA film due to the electron beam exposure, respectively. n1 and n2 are effective refractive indices of core and cladding, respectively.

Fig. 3
Fig. 3

Near-field pattern of the mode (shown in a white line in the black and white print) in the curved waveguide.

Fig. 4
Fig. 4

Power pattern of the mode in the curved waveguide measured with a slit. The broken line represents the theoretical result which considers the slit width. The core region is −2 < x/T < 0.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ( 8 v + 4 ) 3 9 π 2 [ 1 + ( 2 m + 3 2 ) 2 / 3 ] 3 ,
R = 2 n 1 k 0 [ 2 ( 1 - n 2 n 1 ) ] 3 / 2 R ,
v = n 1 k 0 [ 2 ( 1 - n 2 n 1 ) ] 1 / 2 T .
β = n 1 k 0 ( 1 + T R ) - ( n 1 - n 2 ) k 0 { ( 6 R ) 2 / 3 [ ( m + 3 4 ) π ] 2 / 3 - 4 R } ,
n = n 2 + n 1 ( T / R ) .
( 6 R ) 2 / 3 [ ( m + 3 4 ) π ] 2 / 3 - 4 R < 1.

Metrics