Abstract

Reported here for the first time is the use of simultaneous airborne laser-induced dye fluorescence and the 3400-cm−1 OH-stretch water Raman backscatter spectra to yield the absolute concentration of an ocean-dispersed tracer dye. Using a straightforward theoretical model, the concentration is calculated by numerically comparing the airborne laser-induced fluorescence and Raman backscatter spectra to similar laboratory data for a known dye concentration measured under comparable environmental and instrumental conditions. The dye is assumed to be uniformly mixed throughout the water column together with other interfering, fluorescent, organic matter. A minimum detectable integrated water column dye concentration of ~2 ppb by weight as limited by background and instrument noise is obtained. A dye concentration contour map produced from the conical scan lidar data is given.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Smart, I. M. S. Laidlaw, Water Resour. Res. 13, (1), 15 (1977).
    [CrossRef]
  2. H. H. Carter, P. V. Rapp, Reun. Cons. Int. Explor. Mer 167, 193 (1974).
  3. P. Bruun, Eng. Geol. 4, 73 (1970).
    [CrossRef]
  4. T. Ichiye, N. B. Plutchak, Limnol. Oceanogr. 11, 364 (1966).
    [CrossRef]
  5. J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).
  6. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Wiley, New York, 1966).
  7. E. M. Stanley, “The Refractive Index of Pure Water and Seawater as a Function of High Pressure and Moderate Temperature,” Report 3066, Part 3, Naval Ship Research and Development Center, Washington, D.C. (March1970).
  8. N. G. Jerlov, Marine Optics, Oceanography Series14 (Elsevier, Amsterdam, 1976).
    [CrossRef]
  9. R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
    [CrossRef] [PubMed]
  10. R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
    [CrossRef]
  11. R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).
  12. R. W. Burke, R. Mavrodineanu, J. Res. Natl. Bur. Stand. A: 80, 631 (1976).
  13. D. A. Leonard, B. Caputo, F. E. Hoge, Appl. Opt. 18, 1732 (1979).
    [CrossRef] [PubMed]
  14. R. B. Slusher, V. E. Derr, Appl. Opt. 14, 2116 (1975).
    [CrossRef] [PubMed]
  15. C. H. Chang, L. A. Young, Avco Everett Research Laboratory, Research Note 920, Contract N62269-72-C-0204 ARPA Order 1911, Everett, Mass. (July1972).
  16. C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).
  17. Airborne Oceanographic Lidar System, Final Report, NASA Contractor Report CR-141407, contract NAS6-2653 (Avco-Everett Research Laboratory, Everett, Mass., Oct.1975).
  18. F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
    [CrossRef] [PubMed]
  19. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  20. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
    [CrossRef]
  21. R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).
  22. A. Zimmerman, A. R. Bandy, Final Technical Report, NASA contract NAS1-11707 (Aug.1975).

1980 (3)

1979 (1)

1978 (1)

J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).

1977 (1)

P. L. Smart, I. M. S. Laidlaw, Water Resour. Res. 13, (1), 15 (1977).
[CrossRef]

1976 (2)

R. W. Burke, R. Mavrodineanu, J. Res. Natl. Bur. Stand. A: 80, 631 (1976).

R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
[CrossRef] [PubMed]

1975 (2)

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

R. B. Slusher, V. E. Derr, Appl. Opt. 14, 2116 (1975).
[CrossRef] [PubMed]

1974 (1)

H. H. Carter, P. V. Rapp, Reun. Cons. Int. Explor. Mer 167, 193 (1974).

1972 (1)

R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).

1970 (2)

P. Bruun, Eng. Geol. 4, 73 (1970).
[CrossRef]

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

1966 (1)

T. Ichiye, N. B. Plutchak, Limnol. Oceanogr. 11, 364 (1966).
[CrossRef]

Bandy, A. R.

A. Zimmerman, A. R. Bandy, Final Technical Report, NASA contract NAS1-11707 (Aug.1975).

Bressel, C.

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).

Bruun, P.

P. Bruun, Eng. Geol. 4, 73 (1970).
[CrossRef]

Buja-Bijunas, L.

Burke, R. W.

R. W. Burke, R. Mavrodineanu, J. Res. Natl. Bur. Stand. A: 80, 631 (1976).

R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).

Caputo, B.

Carter, H. H.

H. H. Carter, P. V. Rapp, Reun. Cons. Int. Explor. Mer 167, 193 (1974).

Chang, C. H.

C. H. Chang, L. A. Young, Avco Everett Research Laboratory, Research Note 920, Contract N62269-72-C-0204 ARPA Order 1911, Everett, Mass. (July1972).

Deardorff, E. R.

R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).

Derr, V. E.

Frederick, E. B.

Garlick, J.

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

Gorden, H. H.

J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).

Hoge, F. E.

F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

D. A. Leonard, B. Caputo, F. E. Hoge, Appl. Opt. 18, 1732 (1979).
[CrossRef] [PubMed]

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).

Holmes, R. W.

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

Houston, W. R.

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

Ichiye, T.

T. Ichiye, N. B. Plutchak, Limnol. Oceanogr. 11, 364 (1966).
[CrossRef]

Itzkan, I.

R. T. V. Kung, I. Itzkan, Appl. Opt. 15, 409 (1976).
[CrossRef] [PubMed]

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).

Jerlov, N. G.

N. G. Jerlov, Marine Optics, Oceanography Series14 (Elsevier, Amsterdam, 1976).
[CrossRef]

Kaye, G. W. C.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Wiley, New York, 1966).

Kung, R. T. V.

Laby, T. H.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Wiley, New York, 1966).

Laidlaw, I. M. S.

P. L. Smart, I. M. S. Laidlaw, Water Resour. Res. 13, (1), 15 (1977).
[CrossRef]

Leonard, D. A.

Mavrodineanu, R.

R. W. Burke, R. Mavrodineanu, J. Res. Natl. Bur. Stand. A: 80, 631 (1976).

Measures, R. M.

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

Menis, O.

R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).

Munday, J. C.

J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).

Nunes, J. E.

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).

O’Neil, R. A.

Plutchak, N. B.

T. Ichiye, N. B. Plutchak, Limnol. Oceanogr. 11, 364 (1966).
[CrossRef]

Rapp, P. V.

H. H. Carter, P. V. Rapp, Reun. Cons. Int. Explor. Mer 167, 193 (1974).

Rayner, D. M.

Slusher, R. B.

Smart, P. L.

P. L. Smart, I. M. S. Laidlaw, Water Resour. Res. 13, (1), 15 (1977).
[CrossRef]

Stanley, E. M.

E. M. Stanley, “The Refractive Index of Pure Water and Seawater as a Function of High Pressure and Moderate Temperature,” Report 3066, Part 3, Naval Ship Research and Development Center, Washington, D.C. (March1970).

Stephenson, D. G.

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

Swift, R. N.

Welch, C. S.

J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).

Young, L. A.

C. H. Chang, L. A. Young, Avco Everett Research Laboratory, Research Note 920, Contract N62269-72-C-0204 ARPA Order 1911, Everett, Mass. (July1972).

Zimmerman, A.

A. Zimmerman, A. R. Bandy, Final Technical Report, NASA contract NAS1-11707 (Aug.1975).

Appl. Opt. (6)

Can. J. Remote Sensing (1)

R. M. Measures, J. Garlick, W. R. Houston, D. G. Stephenson, Can. J. Remote Sensing 1 (2), 95 (1975).

Eng. Geol. (1)

P. Bruun, Eng. Geol. 4, 73 (1970).
[CrossRef]

J. Res. Natl. Bur. Stand. A (2)

R. W. Burke, E. R. Deardorff, O. Menis, J. Res. Natl. Bur. Stand. A: 76, 469 (1972).

R. W. Burke, R. Mavrodineanu, J. Res. Natl. Bur. Stand. A: 80, 631 (1976).

Limnol. Oceanogr. (2)

T. Ichiye, N. B. Plutchak, Limnol. Oceanogr. 11, 364 (1966).
[CrossRef]

R. W. Holmes, Limnol. Oceanogr. 15, 688 (1970).
[CrossRef]

Photogramm. Eng. Remote Sensing (1)

J. C. Munday, C. S. Welch, H. H. Gorden, Photogramm. Eng. Remote Sensing 44 (1), 87 (1978).

Reun. Cons. Int. Explor. Mer (1)

H. H. Carter, P. V. Rapp, Reun. Cons. Int. Explor. Mer 167, 193 (1974).

Water Resour. Res. (1)

P. L. Smart, I. M. S. Laidlaw, Water Resour. Res. 13, (1), 15 (1977).
[CrossRef]

Other (7)

A. Zimmerman, A. R. Bandy, Final Technical Report, NASA contract NAS1-11707 (Aug.1975).

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Wiley, New York, 1966).

E. M. Stanley, “The Refractive Index of Pure Water and Seawater as a Function of High Pressure and Moderate Temperature,” Report 3066, Part 3, Naval Ship Research and Development Center, Washington, D.C. (March1970).

N. G. Jerlov, Marine Optics, Oceanography Series14 (Elsevier, Amsterdam, 1976).
[CrossRef]

C. H. Chang, L. A. Young, Avco Everett Research Laboratory, Research Note 920, Contract N62269-72-C-0204 ARPA Order 1911, Everett, Mass. (July1972).

C. Bressel, I. Itzkan, J. E. Nunes, F. E. Hoge, in Proceedings, Eleventh International Symposium Remote Sensing Environment, Vol. 2 (Environmental Research Institute, Ann Arbor, Mich., 1977).

Airborne Oceanographic Lidar System, Final Report, NASA Contractor Report CR-141407, contract NAS6-2653 (Avco-Everett Research Laboratory, Everett, Mass., Oct.1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Definition of some theoretical model parameters using the general idealized shape of an airborne LIF spectrum of ocean water with dispersed dye. Ar and Ad are the areas under the spectral curve for the Raman and dye bands that exceed the interpolated portions of the broadband organic fluorescence. R and F are the respective peak values for the Raman and dye fluorescence bands.

Fig. 2
Fig. 2

Fluorescence excitation and emission spectra for rhodamine WT dye as obtained using a Perkin-Elmer model MPF-2A. Absorption spectrum was obtained using a Pye-Unicam model 1800 dual beam spectrophotometer. Corrections for lamp, instrument, and phototube are small and have not been applied here.

Fig. 3
Fig. 3

Laboratory LIF spectrum of Atlantic Ocean test site region seawater grab sample to which 12 ppb of rhodamine WT tracer dye have been added. ar and ad are the areas under the spectral curve for the laser-induced Raman scatter and dye fluorescence bands that exceed the interpolated portions of the broadband organic fluorescence spectrum. Labeled ar and ad areas are completely analogous to the airborne Ar and Ad schematically shown in Fig. 1. Indicated mean-position-without-dye was obtained by actually exciting the seawater grab sample without dye. All spectra have been corrected for instrument response.

Fig. 4
Fig. 4

Actual laboratory LIF spectrum of singly distilled water to which 10-ppb rhodamine WT dye had been added. Mean-position-without-dye was found by actually exciting and measuring the distilled water without dye.

Fig. 5
Fig. 5

Block diagram of the laboratory LIF spectrometer. System spectral irradiance is corrected using an Optronics Laboratories tungsten–halogen standard lamp whose calibration is traceable to the U.S. National Bureau of Standards. Wavelength is calibrated using a mercury lamp spectrum together with available laser wavelengths at 337.1, 540.1, and 632.8 nm.

Fig. 6
Fig. 6

Laboratory LIF spectrum of Chesapeake Bay estuarine water to which 12 ppb of rhodamine WT by weight have been added. Coastal and riverine laser-induced spectra are dominated by the organic matter fluorescence. A reasonably good estimate of the ad/ar ratio should still be possible by extrapolating the spectra as shown. Application to coastal waters of airborne tracer dye methods will be more hindered by the high diffuse attenuation levels generally found in these regions.

Fig. 7
Fig. 7

(a) LIF spectrum taken by the AOL while over the dye release. This waveform is typical of the single-laser-shot-induced spectra. Water Raman signal as well as the dye band are easily resolved. (b) LIF spectrum obtained using the AOL. These data are an average of ten spectra taken in the region outside the dye release. It is obviously dominated by the OH-stretch water Raman backscatter and exhibits very little organic fluorescence.

Fig. 8
Fig. 8

Plot of the measured dye concentration Nd as obtained from nonscanning airborne lidar data, the laboratory calibration results shown in Fig. 3, and Eq. (18).

Fig. 9
Fig. 9

Time series plot of airborne LIF spectral signal return amplitudes for channels 2, 11, 20, 22, and 24. Space does not allow all the channels to be shown. Only the principal Raman contribution (channel 2) and dye band emission (channels 20, 22, 24) to the total spectrum were selected. Channel 11 is included to show typical fluorosensor response in spectral regions not containing Raman and dye emissions. Absence of any Raman suppression in channel 2 shows that the dye contributes little if any attenuation at 337.1 and 381.0 nm. The 5-Hz amplitude modulation of the fluorescence is a result of conical scanning of the system during overlight as discussed in the text.

Fig. 10
Fig. 10

Dye concentration contour plot or image produced from channel 20 results in Fig. 9 together with the simultaneously recorded azimuthal scan angle data. The entire contiguous image may be seen in the usual configuration by joining the three segments of AA′ and BB′, respectively. Roll and pitch of the aircraft are corrected using data from a Litton LTN-51 inertial navigation system. Alternately, the roll and pitch may also be obtained directly from the scanning lidar slant range data. Contours labeled as ten digital counts correspond to 3.33-ppb dye concentration, twenty digital counts to 6.66 ppb, etc.

Tables (2)

Tables Icon

Table I Interpolated Attenuation and Computed κ Values

Tables Icon

Table II AOL Fluorosensing Mode Parameters

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P z = P τ e exp ( κ e z ) ,
d K r = σ N P z d z ,
d K r = σ N τ e τ r P exp [ ( κ e + κ r ) z ] d z .
K r = σ N τ e τ r P κ e + κ r .
K d = σ d N d τ e τ d P κ e + κ d ,
K f = σ f N f τ e τ f P κ e + κ f ,
K i = K r + K d + K f .
K i = ( δ i r ψ + ζ i + δ i d γ ) P ,
ψ = σ N τ e τ r κ e + κ r ,
γ = σ d N d τ e τ d κ e + κ d ,
ζ i = σ f N f τ e τ f κ e + κ f ,
K d = ( ζ d + γ ) P .
K r = ( ζ r + ψ ) P .
γ = ψ · K d ζ d P K r ζ r P ,
N d = N σ τ r σ d τ d · κ e + κ d κ e + κ r · K d ζ d P K r ζ r P ,
N d = N σ σ d · A d A r ,
n d = n σ σ d a d a r ,
N d = n d a r a d A d A r ,

Metrics