Abstract

A technique is introduced that uses the ratios of the outputs of a multicolor ir sensor to analyze the flux from an object to determine the true temperature of the object and the relative amounts of the flux that are due to self-emission and to reflection from external sources.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Hornbeck, Appl. Opt. 5, 179 (1966).
    [CrossRef] [PubMed]
  2. A. W. Kratzke, J. R. Worden, J. Opt. Soc. of Am. 60, 1476 (1970).
    [CrossRef]
  3. R. Clow, F. McNolty, Appl. Opt. 13, 1238 (1974).
    [CrossRef] [PubMed]

1974

1970

A. W. Kratzke, J. R. Worden, J. Opt. Soc. of Am. 60, 1476 (1970).
[CrossRef]

1966

Clow, R.

Hornbeck, G. A.

Kratzke, A. W.

A. W. Kratzke, J. R. Worden, J. Opt. Soc. of Am. 60, 1476 (1970).
[CrossRef]

McNolty, F.

Worden, J. R.

A. W. Kratzke, J. R. Worden, J. Opt. Soc. of Am. 60, 1476 (1970).
[CrossRef]

Appl. Opt.

J. Opt. Soc. of Am.

A. W. Kratzke, J. R. Worden, J. Opt. Soc. of Am. 60, 1476 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ratios Q, R, and S vs temperature.

Fig. 2
Fig. 2

Apparent temperature.

Fig. 3
Fig. 3

Graybody analysis in the S-R plane.

Fig. 4
Fig. 4

Known nongraybody analysis in the S-R plane.

Fig. 5
Fig. 5

Known nongraybody analysis in the Q-R plane.

Fig. 6
Fig. 6

Unknown nongraybody analysis in the S-R plane.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

R = a λ b 5 [ exp ( c 2 / λ b T ) - 1 ] b λ a 5 [ exp ( c 3 / λ a T ) - 1 ] ,
R = a λ b b λ a 5 exp [ c 2 T ( 1 λ b - 1 λ a ) ]
T = c 2 ( 1 λ b - 1 λ a ) ln R - ln ( a λ b 5 b λ a 5 ) .
R = a λ b 4 b λ a 4 ,
Q = V Band 1 V Band 4 = E Band 1 E Band 4 , R = V Band 2 V Band 4 = E Band 2 E Band 4 ,
S = V Band 3 V Band 4 = E Band 3 E Band 4 ,
E r i and E s i ,
R M = E s 2 + E s 2 E s 4 + E r 4 = E s 2 E s 4 E s 4 E s 4 + E r 4 + E r 2 E r 4 E r 4 E s 4 + E r 4 ,
S M = E s 3 + E r 3 E s 4 + E r 4 = E s 3 E s 4 E s 4 E s 4 + E r 4 + E r 3 E r 4 E r 4 E s 4 + E r 4 .
R f = ( E s 2 / E s 4 ) ,             S f = ( E s 3 / E s 4 )
R e = ( E r 2 / E r 4 ) , S e = ( E r 3 / E r 4 )
α = E s 4 E s 4 + E r 4 , β = E r 4 E s 4 + E r 4 ,
R M = α R f + β R e ,
S M = α S f + β S e ,
α + β = 1 ,
| 1 1 1 R M R f R e S M S f S e | = 0.
| 1 R M S M . |
| 1 R f S f |             and             | 1 R e S e |
R M = α R f + β R e + γ R s ,
S M = α S f + β S e + γ S s ,
Q M = α Q f + β Q e + γ Q s ,
α + β + γ = 1 ,

Metrics