Abstract

This paper describes a new method of separating only the isopachics of a birefringent object, the present eliminating the photoelastic effect of the object by using immersion method polarization holography. Further, the isochromatics can be also obtained from the isochromatic–isopachic fringe pattern without mutual interaction. Experimental results are given for a photoelastic model using air and water as the immersion media.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisida, H. Saito, Exp. Mech. 4, 366 (1964).
    [CrossRef]
  2. M. E. Fourney, K. V. Mate, Exp. Mech. 10, 177 (1970).
    [CrossRef]
  3. R. J. Sanford, A. J. Durelli, Exp. Mech. 11, 161 (1971).
    [CrossRef]
  4. R. J. Sanford, Exp. Mech. 13, 330 (1973).
    [CrossRef]
  5. H. H. M. Chau, Rev. Sci. Instrum. 39, 1789 (1968).
    [CrossRef]
  6. R. O’Regan, T. D. Dudderar, Exp. Mech. 11, 241 (1971).
    [CrossRef]
  7. A. W. Lohmann, Appl. Opt. 4, 1667 (1965).
    [CrossRef]
  8. N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
    [CrossRef]
  9. H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
    [CrossRef]
  10. D. Post, Proc. S.E.S.A. 12, 191 (1954).

1975 (1)

H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
[CrossRef]

1973 (1)

R. J. Sanford, Exp. Mech. 13, 330 (1973).
[CrossRef]

1971 (2)

R. O’Regan, T. D. Dudderar, Exp. Mech. 11, 241 (1971).
[CrossRef]

R. J. Sanford, A. J. Durelli, Exp. Mech. 11, 161 (1971).
[CrossRef]

1970 (1)

M. E. Fourney, K. V. Mate, Exp. Mech. 10, 177 (1970).
[CrossRef]

1968 (2)

H. H. M. Chau, Rev. Sci. Instrum. 39, 1789 (1968).
[CrossRef]

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

1965 (1)

1964 (1)

M. Nisida, H. Saito, Exp. Mech. 4, 366 (1964).
[CrossRef]

1954 (1)

D. Post, Proc. S.E.S.A. 12, 191 (1954).

Chau, H. H. M.

H. H. M. Chau, Rev. Sci. Instrum. 39, 1789 (1968).
[CrossRef]

Dudderar, T. D.

R. O’Regan, T. D. Dudderar, Exp. Mech. 11, 241 (1971).
[CrossRef]

Durelli, A. J.

R. J. Sanford, A. J. Durelli, Exp. Mech. 11, 161 (1971).
[CrossRef]

Fourney, M. E.

M. E. Fourney, K. V. Mate, Exp. Mech. 10, 177 (1970).
[CrossRef]

Itoh, Y.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Iwata, K.

H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
[CrossRef]

Kubo, H.

H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
[CrossRef]

Lohmann, A. W.

Mate, K. V.

M. E. Fourney, K. V. Mate, Exp. Mech. 10, 177 (1970).
[CrossRef]

Matsuda, K.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Nagata, R.

H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
[CrossRef]

Nisida, M.

M. Nisida, H. Saito, Exp. Mech. 4, 366 (1964).
[CrossRef]

O’Regan, R.

R. O’Regan, T. D. Dudderar, Exp. Mech. 11, 241 (1971).
[CrossRef]

Post, D.

D. Post, Proc. S.E.S.A. 12, 191 (1954).

Saito, H.

M. Nisida, H. Saito, Exp. Mech. 4, 366 (1964).
[CrossRef]

Sanford, R. J.

R. J. Sanford, Exp. Mech. 13, 330 (1973).
[CrossRef]

R. J. Sanford, A. J. Durelli, Exp. Mech. 11, 161 (1971).
[CrossRef]

Shiotake, N.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Takeya, N.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Tsujiuchi, J.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Tsuruta, T.

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Appl. Opt. (1)

Exp. Mech. (5)

M. Nisida, H. Saito, Exp. Mech. 4, 366 (1964).
[CrossRef]

M. E. Fourney, K. V. Mate, Exp. Mech. 10, 177 (1970).
[CrossRef]

R. J. Sanford, A. J. Durelli, Exp. Mech. 11, 161 (1971).
[CrossRef]

R. J. Sanford, Exp. Mech. 13, 330 (1973).
[CrossRef]

R. O’Regan, T. D. Dudderar, Exp. Mech. 11, 241 (1971).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968).
[CrossRef]

Opt. Acta (1)

H. Kubo, K. Iwata, R. Nagata, Opt. Acta 22, 59 (1975).
[CrossRef]

Proc. S.E.S.A. (1)

D. Post, Proc. S.E.S.A. 12, 191 (1954).

Rev. Sci. Instrum. (1)

H. H. M. Chau, Rev. Sci. Instrum. 39, 1789 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement: P1Q1: circular polariscope; P2,P3: Polaroid sheets; Q2: quarter-wave plate; Q3: half-wave plate; B: immersion cell.

Fig. 2
Fig. 2

The fringe pattern due to a refractive index change obtained from a double-exposure hologram for an unstressed model.

Fig. 3
Fig. 3

The fringe patterns obtained from another double-exposure hologram for the stressed model as shown in Fig. 2 under compression across the diameter. (a), (b), and (c) are obtained with Ex plus Ey, Ex, and Ey, respectively, where Ex and Ey are two orthogonally linearly polarized reference beams.

Fig. 4
Fig. 4

A moiré pattern formed by Figs. 2 and 3(a), showing the isopachics.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E x = [ exp ( i k 1 r ) 0 ] , E y = [ 0 exp ( i k 2 r ) ] , k i r = k ( a i x + b i y ) ( i = 1 , 2 ) , ( k = 2 π / λ ) ,
E 0 = 1 2 [ - i 1 ] .
M 1 = { cos 2 ψ + exp ( - i ρ ) sin 2 ψ [ 1 - exp ( - i ρ ) ] sin ψ cos ψ [ 1 - exp ( - i ρ ) ] sin ψ cos ψ sin 2 ψ + exp ( - i ρ ) cos 2 ψ } ,
ρ = k t ( n 1 - n 2 ) ,
M 2 = 1 2 [ 1 i i 1 ] .
E 1 = M 2 M 1 E 0 exp ( i k μ 1 T ) ,
I h = i = 1 2 ( E i + E x + E y ) ( E i + E x + E y ) ,
E h = [ E x ( E 1 + E 2 ) ] E x + [ E y ( E 1 + E 2 ) ] E y .
I 1 = E x ( E 1 + E 2 ) 2 E x E x = 4 cos 2 [ k 2 ( μ 1 - μ 2 ) T ] sin 2 [ k 2 ( n 1 - n 2 ) t ] .
I 2 = E y ( E 1 + E 2 ) 2 E y E y = 4 cos 2 [ k 2 ( μ 1 - μ 2 ) T ] cos 2 [ k 2 ( n 1 - n 2 ) t ] .
I = E h E h = 4 cos 2 [ k 2 ( μ 1 - μ 2 ) T ] .

Metrics