Abstract

Measurements of infrared optical parametric fluorescence are reported for the first time. Using a pump wavelength of 1.064 μ in LiNbO3, observations of the fluorescence power, bandwidth, and angular dependence at 1.63 μ are in good agreement with a plane-wave theory. The operating characteristics of two pulsed, internal, doubly resonant parametric oscillators are also reported and compared with predictions of the fluorescence measurements. With measured thresholds on the order of 400–700 W, the two oscillators provided nearly continuous tuning from 1.51 μ to 3.55 μ with average powers of 6 mW and peak powers of 600 W. These powers represent available pump conversion efficiencies of 10% and 50%, respectively. Oscillating bandwidths were only 10% of the fluorescence bandwidth and ranged from 1.7 cm−1 to 45 cm−1, depending on the output wavelength. Longitudinal mode structure and multiple pulsing of the oscillators were observed.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
    [CrossRef]
  2. E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
    [CrossRef]
  3. E. O. Ammann, J. M. Yarborough, Appl. Phys. Lett. 17, 233 (1970).
    [CrossRef]
  4. D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
    [CrossRef]
  5. J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
    [CrossRef]
  6. J. A. Giordmaine, R. C. Miller, Phys. Rev. 14, 973 (1965).
  7. R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
    [CrossRef]
  8. J. E. Bjorkholm, Appl. Phys. Lett. 13, 53 (1968).
    [CrossRef]
  9. J. Falk, J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
    [CrossRef]
  10. L. S. Goldberg, Appl. Phys. Lett. 17, 489 (1971).
    [CrossRef]
  11. R. W. Wallace, Appl. Phys. Lett. 17, 497 (1971).
    [CrossRef]
  12. R. L. Byer, S. E. Harris, Phys. Rev. 168, 1064 (1968).
    [CrossRef]
  13. S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
    [CrossRef]
  14. C. Laurence, F. Tittel, Opto-Electron. 3, 1 (1971).
    [CrossRef]
  15. A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
    [CrossRef]
  16. J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
    [CrossRef]
  17. W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
    [CrossRef]
  18. T. G. Giallorenzi, C. L. Tang, Phys. Rev. 166, 225 (1968).
    [CrossRef]
  19. D. A. Kleinman, Phys. Rev. 174, 1027 (1068).
  20. D. Magde, H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
    [CrossRef]
  21. M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
    [CrossRef]
  22. J. E. Midwinter, J. Appl. Phys. 39, 3033 (1068).
  23. J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
    [CrossRef]
  24. R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
    [CrossRef]
  25. J. E. Pearson, PhD Thesis, California Institute of Technology (1972).
  26. E. O. Ammann, Rep. AFAL-TR-72–13, GTE Sylvania, Inc., Mountain View, Calif. (Jan.1972).
  27. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  28. L. B. Kreuzer, Appl. Phys. Lett. 13, 57 (1968).
    [CrossRef]
  29. R. L. Byer, PhD Thesis, Stanford University (1968).
  30. J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
    [CrossRef]

1972 (2)

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
[CrossRef]

1971 (6)

L. S. Goldberg, Appl. Phys. Lett. 17, 489 (1971).
[CrossRef]

R. W. Wallace, Appl. Phys. Lett. 17, 497 (1971).
[CrossRef]

C. Laurence, F. Tittel, Opto-Electron. 3, 1 (1971).
[CrossRef]

A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
[CrossRef]

J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
[CrossRef]

J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
[CrossRef]

1970 (3)

R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
[CrossRef]

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

E. O. Ammann, J. M. Yarborough, Appl. Phys. Lett. 17, 233 (1970).
[CrossRef]

1969 (2)

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

J. Falk, J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

1968 (7)

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

J. E. Bjorkholm, Appl. Phys. Lett. 13, 53 (1968).
[CrossRef]

R. L. Byer, S. E. Harris, Phys. Rev. 168, 1064 (1968).
[CrossRef]

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

L. B. Kreuzer, Appl. Phys. Lett. 13, 57 (1968).
[CrossRef]

T. G. Giallorenzi, C. L. Tang, Phys. Rev. 166, 225 (1968).
[CrossRef]

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

1967 (2)

D. Magde, H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
[CrossRef]

S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

1966 (1)

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

1965 (1)

J. A. Giordmaine, R. C. Miller, Phys. Rev. 14, 973 (1965).

1961 (1)

W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
[CrossRef]

Ammann, E. O.

J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
[CrossRef]

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

E. O. Ammann, J. M. Yarborough, Appl. Phys. Lett. 17, 233 (1970).
[CrossRef]

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

E. O. Ammann, Rep. AFAL-TR-72–13, GTE Sylvania, Inc., Mountain View, Calif. (Jan.1972).

Ashkin, A.

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Ballman, A. A.

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Bergman, J. G.

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, Appl. Phys. Lett. 13, 53 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Byer, R. L.

R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
[CrossRef]

R. L. Byer, S. E. Harris, Phys. Rev. 168, 1064 (1968).
[CrossRef]

S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

R. L. Byer, PhD Thesis, Stanford University (1968).

Dziedzic, J. M.

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Falk, J.

J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
[CrossRef]

J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
[CrossRef]

J. Falk, J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

Feigelson, R. S.

R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
[CrossRef]

Foster, J. D.

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

Ganiel, U.

J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
[CrossRef]

Geusic, J. E.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, C. L. Tang, Phys. Rev. 166, 225 (1968).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, R. C. Miller, Phys. Rev. 14, 973 (1965).

Goldberg, L. S.

L. S. Goldberg, Appl. Phys. Lett. 17, 489 (1971).
[CrossRef]

Hanna, D. C.

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

Harris, S. E.

R. L. Byer, S. E. Harris, Phys. Rev. 168, 1064 (1968).
[CrossRef]

S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

Hobden, M. V.

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Hordvik, A.

A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

D. A. Kleinman, Phys. Rev. 174, 1027 (1068).

Kreuzer, L. B.

L. B. Kreuzer, Appl. Phys. Lett. 13, 57 (1968).
[CrossRef]

Laurence, C.

C. Laurence, F. Tittel, Opto-Electron. 3, 1 (1971).
[CrossRef]

Levinstein, H. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Louisell, W. H.

W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
[CrossRef]

Luther-Davies, B.

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

Magde, D.

D. Magde, H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
[CrossRef]

Mahr, H.

D. Magde, H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, J. Appl. Phys. 39, 3033 (1068).

Miller, R. C.

J. A. Giordmaine, R. C. Miller, Phys. Rev. 14, 973 (1965).

Montgomery, P. C.

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

Murray, J. E.

J. Falk, J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

Oshman, M. K.

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

Pearson, J. E.

J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
[CrossRef]

J. E. Pearson, PhD Thesis, California Institute of Technology (1972).

Rubin, J. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Rutt, H. N.

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

Schlossberg, H. R.

A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
[CrossRef]

Siegman, A. E.

W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
[CrossRef]

Singh, S.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Smith, R. C.

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

Smith, R. G.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

Stickley, C. M.

A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
[CrossRef]

Tang, C. L.

T. G. Giallorenzi, C. L. Tang, Phys. Rev. 166, 225 (1968).
[CrossRef]

Tittel, F.

C. Laurence, F. Tittel, Opto-Electron. 3, 1 (1971).
[CrossRef]

Van Uitert, L. G.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

Wallace, R. W.

R. W. Wallace, Appl. Phys. Lett. 17, 497 (1971).
[CrossRef]

Warner, J.

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Yarborough, J. M.

J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
[CrossRef]

E. O. Ammann, J. M. Yarborough, Appl. Phys. Lett. 17, 233 (1970).
[CrossRef]

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

Yarborough, J. M. -

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

Yariv, A.

J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
[CrossRef]

W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
[CrossRef]

Young, J. F.

R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
[CrossRef]

Appl. Phys. Lett. (12)

E. O. Ammann, M. K. Oshman, J. D. Foster, J. M. Yarborough, Appl. Phys. Lett. 15, 131 (1969).
[CrossRef]

E. O. Ammann, J. M. - Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).
[CrossRef]

E. O. Ammann, J. M. Yarborough, Appl. Phys. Lett. 17, 233 (1970).
[CrossRef]

D. C. Hanna, B. Luther-Davies, H. N. Rutt, R. C. Smith, Appl. Phys. Lett. 20, 34 (1972).
[CrossRef]

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. Van Uitert, Appl. Phys. Lett. 12, 308 (1968).
[CrossRef]

J. E. Bjorkholm, Appl. Phys. Lett. 13, 53 (1968).
[CrossRef]

J. Falk, J. E. Murray, Appl. Phys. Lett. 14, 245 (1969).
[CrossRef]

L. S. Goldberg, Appl. Phys. Lett. 17, 489 (1971).
[CrossRef]

R. W. Wallace, Appl. Phys. Lett. 17, 497 (1971).
[CrossRef]

A. Hordvik, H. R. Schlossberg, C. M. Stickley, Appl. Phys. Lett. 18, 448 (1971).
[CrossRef]

J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
[CrossRef]

L. B. Kreuzer, Appl. Phys. Lett. 13, 57 (1968).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
[CrossRef]

J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron. QE-7, 359 (1971).
[CrossRef]

J. E. Pearson, U. Ganiel, A. Yariv, IEEE J. Quantum Electron. QE-8, 383 (1972).
[CrossRef]

J. Appl. Phys. (3)

R. L. Byer, J. F. Young, R. S. Feigelson, J. Appl. Phys. 412320 (1970).
[CrossRef]

J. E. Midwinter, J. Appl. Phys. 39, 3033 (1068).

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Opto-Electron. (1)

C. Laurence, F. Tittel, Opto-Electron. 3, 1 (1971).
[CrossRef]

Phys. Lett. (1)

M. V. Hobden, J. Warner, Phys. Lett. 22, 243 (1966).
[CrossRef]

Phys. Rev. (5)

W. H. Louisell, A. Yariv, A. E. Siegman, Phys. Rev. 124, 1646 (1961).
[CrossRef]

T. G. Giallorenzi, C. L. Tang, Phys. Rev. 166, 225 (1968).
[CrossRef]

D. A. Kleinman, Phys. Rev. 174, 1027 (1068).

J. A. Giordmaine, R. C. Miller, Phys. Rev. 14, 973 (1965).

R. L. Byer, S. E. Harris, Phys. Rev. 168, 1064 (1968).
[CrossRef]

Phys. Rev. Lett. (2)

S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

D. Magde, H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
[CrossRef]

Other (3)

J. E. Pearson, PhD Thesis, California Institute of Technology (1972).

E. O. Ammann, Rep. AFAL-TR-72–13, GTE Sylvania, Inc., Mountain View, Calif. (Jan.1972).

R. L. Byer, PhD Thesis, Stanford University (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of experimental arrangement for measuring ir narrow-bandwidth parametric fluorescence. Pump laser, cw Nd:YAG; P1, polarizer; f1,f2, collecting and matching telescope; A, limiting aperture; C, chopper; F, visible and pump filters; f3, short focal length lens; D, PbS photoconductive detector.

Fig. 2
Fig. 2

Signal fluorescence power as a function of wavelength for various detector acceptance angles. The solid curves are theoretical with the temperature chosen to align the peak of the θ = 0.4° curve with the experimental peak (see text). The experimental data are normalized to the peak of each theoretical curve. The monochromator bandwidth is 20 Å and the experimental uncertainty is indicated in each figure. The vertical line at λ1 = 1.6278 μ is the collinear signal wavelength.

Fig. 3
Fig. 3

Total signal power vs detector acceptance angle. The solid line is the theoretical in-crystal fluorescence power per unit pump power calculated using Eq. (6). The dashed line is found using the approximate expression, Eq. (8). The experimental data are normalized to the solid theoretical curve at θ2 = 0.16 deg2.

Fig. 4
Fig. 4

Signal fluorescence bandwidth as a function of detector acceptance angle. The solid line is the exact theoretical bandwidth; the dashed curve is found from Eq. (9).

Fig. 5
Fig. 5

Peak fluorescence power in a 20-Å bandwidth as a function of detector acceptance angle. The ordinate axis is the theoretical in-crystal fluorescence power per unit pump power. The experimental data are normalized to the theoretical curve at θ2 = 0.28 deg2. Solid curve, exact theory, Eq. (6); dashed curve, approximate theory, Eq. (10).

Fig. 6
Fig. 6

Temperature tuning curve for 1.064-μ pumped parametric fluorescence in LiNbO3. The solid theoretical curve has been shifted by +1.9°C and the experimental data points are corrected for finite detector acceptance angle and crystal heating (see text).

Fig. 7
Fig. 7

Minimum bandwidth (collinear bandwidth) as a function of temperature in LiNbO3. The pump wavelength is 1.064 μ, and the phase matching angle is 49°. The data have been corrected for finite detector acceptance angle and crystal heating and the theoretical curve is shifted by +1.9°C.

Fig. 8
Fig. 8

Photograph of experimental setup showing Nd:YAG laser and temperature-controlled oven containing parametric oscillator crystal. Rotating mirror Q-switch is on the left.

Fig. 9
Fig. 9

Parametric oscillator full width at half-maximum spectral bandwidth for (a) 2.1-μ oscillator, and (b) 1.6 μ oscillator. The different symbols are for two different sets of mirror coatings. The solid curves are theoretical normalized to the experimental data at the circled points.

Fig. 10
Fig. 10

Typical monochromator scans for oscillators pumped by lower power laser. (a) 2.1-μ oscillator. (b) 1.6-μ oscillator. The observed structure corresponds exactly to the longitudinal mode spacing of each oscillator.

Fig. 11
Fig. 11

Experimentally observed pulse shapes for the 1.6-μ oscillator for various pump laser drive levels. (a) Low drive level giving a single OPO pulse but showing strong pump depletion. (b) Stronger pumping than in (a). (c) Stronger pumping than in (b). The vertical scales in all the figures are arbitrary.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d P 1 = K ω 1 4 ω 2 l 2 P 3 sinc 2 ( Δ k l / 2 ) ϕ d ϕ d ω 1 ,
Δ k = - b 0 ω - b 1 ω 2 + G ϕ 2 ,
G = ( k 10 k 3 ) / 2 k 20 ,
b 0 = ( k 1 / ω 1 ) ω 10 - ( k 2 / ω 2 ) ω 20 ,
b 1 = 1 2 [ ( 2 k 1 / ω 1 2 ) ω 10 + ( 2 k 2 / ω 2 2 ) ω 20 ]
d P 1 / d ω 1 = ( K ω 1 4 ω 2 l P 3 / G ) { S [ ( G l θ 2 / 2 ) - β ] + S ( β ) } ,
S ( x ) = 0 x sin 2 u u 2 d u .
P 1 = ( K ω 1 4 ω 2 l P 3 / b 0 ) π θ 2
Δ ω 1 = ( 1.77 π / l b 0 ) + ( G θ 2 / b 0 ) .
P 1 / Δ ω 1 = ( π K l P 3 / G ) { θ 2 / [ ( 1.77 π / G l ) + θ 2 ] } .
P thresh . ( one - way power ) = { 700 ± 100 W , λ 1 2 μ 450 ± 100 W , λ 1 1.6 μ .

Metrics