Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Gibson, J. H. Pierluissi, Appl. Opt. 10, 1509 (1971).
    [CrossRef] [PubMed]
  2. V. R. Stull, P. J. Wyatt, G. N. Plass, Appl. Opt. 3, 243 (1964).
    [CrossRef]
  3. P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
    [CrossRef]
  4. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).
  5. V. R. Stull, P. J. Wyatt, G. N. Plass, “Infrared Absorption of Carbon Dioxide,” SSD-TDR-62-127, Vol. 3, Space Systems Division, Air Force Systems Command, Los Angeles, Calif. (January1963).
  6. L. D. Gray, J. Quant. Spectrosc. Radiat. Transfer 7, 143 (1967).
    [CrossRef]
  7. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959), Chap. 11.
  8. R. M. Goody, Atmospheric Radiation 1: Theoretical Basis (Oxford U.P., London, 1964), Chap. 4.

1971

1967

L. D. Gray, J. Quant. Spectrosc. Radiat. Transfer 7, 143 (1967).
[CrossRef]

1964

Burch, D. E.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

France, W. L.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

Gibson, G. A.

Goody, R. M.

R. M. Goody, Atmospheric Radiation 1: Theoretical Basis (Oxford U.P., London, 1964), Chap. 4.

Gray, L. D.

L. D. Gray, J. Quant. Spectrosc. Radiat. Transfer 7, 143 (1967).
[CrossRef]

Gryvnak, D.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

Penner, S. S.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959), Chap. 11.

Pierluissi, J. H.

Plass, G. N.

V. R. Stull, P. J. Wyatt, G. N. Plass, Appl. Opt. 3, 243 (1964).
[CrossRef]

P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
[CrossRef]

V. R. Stull, P. J. Wyatt, G. N. Plass, “Infrared Absorption of Carbon Dioxide,” SSD-TDR-62-127, Vol. 3, Space Systems Division, Air Force Systems Command, Los Angeles, Calif. (January1963).

Singleton, E. B.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

Stull, V. R.

V. R. Stull, P. J. Wyatt, G. N. Plass, Appl. Opt. 3, 243 (1964).
[CrossRef]

P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
[CrossRef]

V. R. Stull, P. J. Wyatt, G. N. Plass, “Infrared Absorption of Carbon Dioxide,” SSD-TDR-62-127, Vol. 3, Space Systems Division, Air Force Systems Command, Los Angeles, Calif. (January1963).

Williams, D.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

Wyatt, P. J.

V. R. Stull, P. J. Wyatt, G. N. Plass, Appl. Opt. 3, 243 (1964).
[CrossRef]

P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
[CrossRef]

V. R. Stull, P. J. Wyatt, G. N. Plass, “Infrared Absorption of Carbon Dioxide,” SSD-TDR-62-127, Vol. 3, Space Systems Division, Air Force Systems Command, Los Angeles, Calif. (January1963).

Appl. Opt.

J. Quant. Spectrosc. Radiat. Transfer

L. D. Gray, J. Quant. Spectrosc. Radiat. Transfer 7, 143 (1967).
[CrossRef]

Other

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959), Chap. 11.

R. M. Goody, Atmospheric Radiation 1: Theoretical Basis (Oxford U.P., London, 1964), Chap. 4.

D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Carbon Dioxide, Water Vapor and Minor Atmospheric Constituents,” Research Report AFCRL-62-698 (July1962).

V. R. Stull, P. J. Wyatt, G. N. Plass, “Infrared Absorption of Carbon Dioxide,” SSD-TDR-62-127, Vol. 3, Space Systems Division, Air Force Systems Command, Los Angeles, Calif. (January1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Transmission of CO2 in the region of 10 μm. The solid curves show the transmission measured in the laboratory by Burch et al.4 for the pressures and amounts of absorber indicated. The dashed histograms show the average transmission computed by Stull et al.2 for similar pressures and amounts of CO2. Open circles refer to the spectral transmittance computed by Stull et al.5 for the larger amount of gas, solid circles for the smaller amount of gas. The absorption feature computed by Stull et al. at 865 cm−1 can be identified as the 20°0–0310 transition. For the experimental conditions shown in this figure, this band is too weak to be detectable in the laboratory data.

Fig. 2
Fig. 2

Annotated back of an envelope, giving transmission calculations for two bands for the two amounts and pressures corresponding to the experimental conditions shown on Fig. 1. Transmissions found by mental arithmetic are enclosed in a rectangle. To the right of these numbers are given the values found by actually performing the indicated calculations. These results are certainly a factor of two more accurate in this spectral region than the values to be found from Gibson and Pierluissi’s published tabulation. The back of the envelope calculations overestimate the average absorption by 20% or less; the tabulated data of Stull et al.2 disagree with the measured absorption by 25% (1064-cm−1 band), 60% (961-cm−1 band), and ∞ (865-cm−1 band). Somewhat better agreement with the measurements might be achieved in the back of the envelope calculations if the assumption that the average line strength, Sline ~ Sband/30, were changed to Sline ~ Sband/40.

Metrics