Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Pole, R. A. Myers, IEEE J. Quantum Electron. QE-2, 182 (1966).
    [CrossRef]
  2. H. Wieder, R. V. Pole, Appl. Opt. 6, 1761 (1967).
    [CrossRef] [PubMed]
  3. H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
    [CrossRef]
  4. E. S. Barrekette, in Applications of Holography, E. S. Barrekette, W. E. Koch, T. Ose, J. Tsujiuchi, G. W. Stroke, Eds. (Plenum, New York, 1971), p. 309.
    [CrossRef]
  5. A. Vander Lugt, Proc. IEEE 54, 1055 (1966).
    [CrossRef]
  6. For simplicity, obliquity effects at the pellicles are not treated explicitly. The results are unchanged by this simplification.
  7. Finite aperture effects are ignored here.
  8. H. S. Black, Bell Syst. Tech. J. 12, 1 (1934); also Elec. Eng. 53, 114 (1934).
  9. Stability of an inhomogeneously broadened laser amplifier with a feedback coefficient H, independent of u and v, has been investigated using the Nyquist criterion by M. O. Hagler and K. S. Chao in unpublished work.
  10. A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
    [CrossRef]
  11. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 53.
  12. A hologram actually produces three outputs. Two of these, the zero order beam and the conjugate beam, must be eliminated. The remaining beam is the desired one, but it emerges at an angle with respect to the incident beam. Compensation for this angle must be made by suitably altering the geometrical arrangement of Fig. 1, using a diffraction grating to cancel the deflection, etc.

1971 (1)

A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
[CrossRef]

1969 (1)

H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
[CrossRef]

1967 (1)

1966 (2)

R. V. Pole, R. A. Myers, IEEE J. Quantum Electron. QE-2, 182 (1966).
[CrossRef]

A. Vander Lugt, Proc. IEEE 54, 1055 (1966).
[CrossRef]

1934 (1)

H. S. Black, Bell Syst. Tech. J. 12, 1 (1934); also Elec. Eng. 53, 114 (1934).

Barrekette, E. S.

E. S. Barrekette, in Applications of Holography, E. S. Barrekette, W. E. Koch, T. Ose, J. Tsujiuchi, G. W. Stroke, Eds. (Plenum, New York, 1971), p. 309.
[CrossRef]

Black, H. S.

H. S. Black, Bell Syst. Tech. J. 12, 1 (1934); also Elec. Eng. 53, 114 (1934).

Hänsch, T. W.

A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
[CrossRef]

Heidrich, P.

H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
[CrossRef]

Myers, R. A.

R. V. Pole, R. A. Myers, IEEE J. Quantum Electron. QE-2, 182 (1966).
[CrossRef]

Papoulis, A.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 53.

Pole, R. V.

H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
[CrossRef]

H. Wieder, R. V. Pole, Appl. Opt. 6, 1761 (1967).
[CrossRef] [PubMed]

R. V. Pole, R. A. Myers, IEEE J. Quantum Electron. QE-2, 182 (1966).
[CrossRef]

Schawlow, A. L.

A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
[CrossRef]

Vander Lugt, A.

A. Vander Lugt, Proc. IEEE 54, 1055 (1966).
[CrossRef]

Varsanyi, F.

A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
[CrossRef]

Wieder, H.

H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
[CrossRef]

H. Wieder, R. V. Pole, Appl. Opt. 6, 1761 (1967).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A dye laser amplifier 1.3 mm in length with a gain of 23 dB/mm in the region of 5700 Å has been recently reported. See T. W. Hänsch, F. Varsanyi, A. L. Schawlow, Appl. Phys. Lett. 18, 108 (1971). Etalons can be used to decrease the effective bandwidth of the amplifier and achieve stability with a larger, practical value of D.
[CrossRef]

Bell Syst. Tech. J. (1)

H. S. Black, Bell Syst. Tech. J. 12, 1 (1934); also Elec. Eng. 53, 114 (1934).

IBM J. Res. Dev. (1)

H. Wieder, R. V. Pole, P. Heidrich, IBM J. Res. Dev. 13, 169 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. V. Pole, R. A. Myers, IEEE J. Quantum Electron. QE-2, 182 (1966).
[CrossRef]

Proc. IEEE (1)

A. Vander Lugt, Proc. IEEE 54, 1055 (1966).
[CrossRef]

Other (6)

For simplicity, obliquity effects at the pellicles are not treated explicitly. The results are unchanged by this simplification.

Finite aperture effects are ignored here.

E. S. Barrekette, in Applications of Holography, E. S. Barrekette, W. E. Koch, T. Ose, J. Tsujiuchi, G. W. Stroke, Eds. (Plenum, New York, 1971), p. 309.
[CrossRef]

Stability of an inhomogeneously broadened laser amplifier with a feedback coefficient H, independent of u and v, has been investigated using the Nyquist criterion by M. O. Hagler and K. S. Chao in unpublished work.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968), p. 53.

A hologram actually produces three outputs. Two of these, the zero order beam and the conjugate beam, must be eliminated. The remaining beam is the desired one, but it emerges at an angle with respect to the incident beam. Compensation for this angle must be made by suitably altering the geometrical arrangement of Fig. 1, using a diffraction grating to cancel the deflection, etc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Laser amplifier with feedback system.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E b ( x 4 , y 4 , k , ω ) = k d 3 2 π i exp ( i k D 3 ) d x 3 d y 3 ψ ¯ ( x 3 , y 3 ; f 1 ) ψ ( x 3 , y 3 ; d 3 ) × ψ ( x 4 , y 4 ; d 3 ) exp [ - i k d 3 ( x 3 x 4 + y 3 y 4 ) ] · k d 2 2 π i exp ( i k D 2 ) d x 2 d y 2 × ψ ( x 2 , y 2 ; f 1 ) ψ ( x 2 , y 2 ; d 2 ) ψ ( x 3 , y 3 ; d 2 ) exp [ - i k d 2 ( x 2 x 3 + y 2 y 3 ) ] · k d 1 2 π i exp ( i k D 1 ) d x 1 d y 1 [ t a ( ω ) E i ( x 1 , y 1 , k , ω ) + r a ( ω ) E a ( x 1 , y 1 , k , ω ) ] · A ( ω ) ψ ( x 1 , y 1 ; d 1 ) ψ ( x 2 , y 2 ; d 1 ) exp [ - i k d 1 ( x 1 x 2 + y 1 y 2 ) ] ,
E a ( x 1 , y 1 , k , ω ) = k d 7 2 π i exp ( i k D 7 ) d x 7 d y 7 ψ ¯ ( x 7 , y 7 ; f 2 ) ψ ( x 7 , y 7 ; d 7 ) × ψ ( x 1 , y 1 ; d 7 ) exp [ - i k d 7 ( x 1 x 7 + y 1 y 7 ) ] · k d 6 2 π i exp ( i k D 6 ) d u 6 d v 6 × H ( k f 2 u 6 , k f 2 v 6 , ω ) ψ ( u 6 , v 6 ; d 6 ) ψ ( x 7 , v 7 ; d 6 ) exp [ - i k d 6 ( u 6 x 7 + v 6 v 7 ) ] · k d 5 2 π i exp ( i k D 5 ) d x 5 d y 5 ψ ¯ ( x 5 , v 5 ; f 2 ) ψ ( x 5 , v 5 ; d 5 ) ψ ( u 6 , v 6 ; d 5 ) × exp [ - i k d 5 ( x 5 u 6 + y 5 v 6 ) ] · k d 4 2 π i exp ( i k D 4 ) d x 4 d y 4 r b ( ω ) × E b ( x 4 , y 4 , k , ω ) ψ ( x 4 , y 4 ; d 4 ) ψ ( x 5 , y 5 ; d 4 ) exp [ - i k d 4 ( x 4 x 5 + y 4 y 5 ) ] ,
E b ( x 4 , y 4 , k , ω ) = A ( ω ) [ t a ( ω ) E i ( - x 4 , - y 4 , k , ω ) + r a ( ω ) E a ( - x 4 , - y 4 , k , ω ) ] exp [ i k ( D 1 + D 2 + D 3 ) ]
E a ( x 1 , y 1 , k , ω ) = - r b ( ω ) h ( - x 1 , - y 1 , ω ) * * E b ( - x 1 , - y 1 , k , ω ) × exp [ i k ( D 4 + D 5 + D 6 + D 7 ) ] ,
ɛ b ( u 4 , v 4 , k , ω ) = A ( ω ) t a ( ω ) ɛ ¯ i ( u 4 , v 4 , k , ω ) exp [ i k ( D 1 + D 2 + D 3 ) ] - A ( ω ) r a ( ω ) r b ( ω ) H ( u 4 , v 4 , ω ) ɛ b ( u 4 , v 4 , k , ω ) × exp [ i k ( D 1 + D 2 + D 3 + D 4 + D 5 + D 6 + D 7 ) ] .
ɛ 0 ( u 4 , v 4 , k , ω ) = t a t b A 1 - B A ɛ ¯ i ( u 4 , v 4 , k , ω ) ,
ɛ 0 ( u 4 , v 4 , k , ω ) t a t b r a r b 1 H ( u 4 , v 4 , ω ) ɛ ¯ i ( u 4 , v 4 , k , ω ) .
E 0 ( x 4 , y 4 , k , ω ) t a t b r a r b h i ( x 4 , y 4 , ω ) * * E i ( - x 4 , - y 4 , k , ω ) ,

Metrics