Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
    [CrossRef]
  2. K. Yoshihara, A. Kitade, Japan. J. Appl. Phys. 6, 116 (1967).
    [CrossRef]
  3. S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).
  4. K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
    [CrossRef]
  5. E. J. Saccocio, J. Opt. Soc. Amer. 57, 966 (1967).
    [CrossRef]
  6. For example, J. W. Goodman, Fourier Optics (McGraw-Hill, New York, 1968), pp. 65.
  7. K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

1969 (2)

S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).

K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

1968 (1)

K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

1967 (2)

E. J. Saccocio, J. Opt. Soc. Amer. 57, 966 (1967).
[CrossRef]

K. Yoshihara, A. Kitade, Japan. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

1965 (1)

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Froehly, C.

S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Goodman, J. W.

For example, J. W. Goodman, Fourier Optics (McGraw-Hill, New York, 1968), pp. 65.

Kamiya, K.

K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Kitade, A.

K. Yoshihara, A. Kitade, Japan. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Lowenthal, S.

S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).

Okada, K.

K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Saccocio, E. J.

E. J. Saccocio, J. Opt. Soc. Amer. 57, 966 (1967).
[CrossRef]

Serres, J.

S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Sugiyama, F.

K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

Yoshihara, K.

K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

K. Yoshihara, A. Kitade, Japan. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Compt. Rend. (1)

S. Lowenthal, C. Froehly, J. Serres, Compt. Rend. 2581481 (1969).

J. Opt. Soc. Amer. (1)

E. J. Saccocio, J. Opt. Soc. Amer. 57, 966 (1967).
[CrossRef]

Japan. J. Appl. Phys. (2)

K. Kamiya, K. Yoshihara, K. Okada, Japan. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

K. Yoshihara, A. Kitade, Japan. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Memo. Fac. Eng. Nagoya Univ. (1)

K. Okada, F. Sugiyama, K. Kamiya, Memo. Fac. Eng. Nagoya Univ. 21, 167 (1969).

Phys. Lett. (1)

G. W. Stroke, A. T. Funkhouser, Phys. Lett. 16, 272 (1965).
[CrossRef]

Other (1)

For example, J. W. Goodman, Fourier Optics (McGraw-Hill, New York, 1968), pp. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of Lloyd’s mirror arrangement. S, slit; S′, mirror image of slit S; M, mirror; SC, screen. Nonlocalized interference fringes are recorded at the hatched region between E and D.

Fig. 2
Fig. 2

Graphical representation of expression (2), in which I(X) shows the intensity distribution of the diffraction pattern given by the sinusoidal transmission grating, of which the spacial frequency is f0 and the width is W.

Fig. 3
Fig. 3

Hologram obtained by SWR with 120-sec exposure. Fringes of about 5 lines/mm are seen in this photograph.

Fig. 4
Fig. 4

The reconstructed spectrum. This is photographed by panchromatic emulsion (ASA 100) with almost 2 h exposure. Two spectral lines are seen on both sides of the central dark part which corresponds to the zero-order spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( x ) = ( t 0 + t cos 2 π f 0 x ) rect ( x / W ) ,
I ( X ) = ( W / 2 λ R Z ) { 4 t 0 2 sinc 2 ( W X / λ R Z ) + t 2 sinc 2 [ W ( X + f 0 λ R Z ) / λ R Z ] + t 2 sinc 2 [ W ( X - f 0 λ R Z ) / λ R Z ] }
f 0 λ R Z = 2 d λ R / l λ 0
R = λ / Δ λ = f 0 λ R Z / ( λ R Z / W ) = f 0 W .

Metrics