Abstract

A series of diffraction patterns produced with the electronic imaging system of the Culgoora radioheliograph is presented. These patterns serve both to illustrate the quality of this type of imaging system and to demonstrate the advantage, in special circumstances, of constructing a radio-frequency simulation of an optical imaging device.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Wild, Ed., Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).
  2. M. Cagnet, M. Frangon, J. C. Thrierr, Atlas of Optical Phenomena (Springer, Berlin, 1962).
  3. N. Fourikis, Proc. Inst. Radio Electron. Eng. Aust. 28, 315 (1967).
  4. For reasons of economy the branching network used here is restricted in the number of its outputs and ray paths (4608). It is technically feasible to build a branching network with a large number of outputs to make it more nearly comparable to a lens. A branching network need never suffer from coma, spherical aberration, etc.
  5. J. P. Wild, Proc. Roy. Soc. A262, 84 (1961).
  6. P. Jacquinot, B. Roizen-Dossier, Compt. Rend. Acad. Sci. (Paris) 256, 4384 (1963).
  7. J. P. Wild, Proc. Roy. Soc. A286, 499 (1965).
  8. D. J. McLean, J. P. Wild, Aust. J. Phys. 14, 489 (1961).
    [CrossRef]
  9. D. J. McLean, Proc. Roy. Soc. A263, 545 (1961).
  10. L. J. Cutrona, Optical and Electro-optical Information Processing, J. T. Tippet, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburg, Eds. (MIT Press, Cambridge, 1965), p. 83.
  11. A. I. Mahan, C. V. Bitterli, S. M. Cannon, J. Opt. Soc. Am. 54, 721 (1964).
    [CrossRef]
  12. G. M. Gelfreyka, A. N. Korzhavin, Radio Eng. Electron. Phys. 13, 1025 (1968).
  13. J. P. Wild, CSIRO, Division of Radiophysics, Sydney, Australia (private communication).
  14. On a photograph like Fig. 2, a J02 field and a J0 field would have a similar appearance, but the bright rings appear twice as numerous on the J02 pattern of the same linear scale.
  15. D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

1968

G. M. Gelfreyka, A. N. Korzhavin, Radio Eng. Electron. Phys. 13, 1025 (1968).

1967

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

J. P. Wild, Ed., Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).

N. Fourikis, Proc. Inst. Radio Electron. Eng. Aust. 28, 315 (1967).

1965

J. P. Wild, Proc. Roy. Soc. A286, 499 (1965).

1964

1963

P. Jacquinot, B. Roizen-Dossier, Compt. Rend. Acad. Sci. (Paris) 256, 4384 (1963).

1961

D. J. McLean, J. P. Wild, Aust. J. Phys. 14, 489 (1961).
[CrossRef]

D. J. McLean, Proc. Roy. Soc. A263, 545 (1961).

J. P. Wild, Proc. Roy. Soc. A262, 84 (1961).

Arm, M.

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

Bitterli, C. V.

Cagnet, M.

M. Cagnet, M. Frangon, J. C. Thrierr, Atlas of Optical Phenomena (Springer, Berlin, 1962).

Cannon, S. M.

Cutrona, L. J.

L. J. Cutrona, Optical and Electro-optical Information Processing, J. T. Tippet, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburg, Eds. (MIT Press, Cambridge, 1965), p. 83.

Fourikis, N.

N. Fourikis, Proc. Inst. Radio Electron. Eng. Aust. 28, 315 (1967).

Frangon, M.

M. Cagnet, M. Frangon, J. C. Thrierr, Atlas of Optical Phenomena (Springer, Berlin, 1962).

Gelfreyka, G. M.

G. M. Gelfreyka, A. N. Korzhavin, Radio Eng. Electron. Phys. 13, 1025 (1968).

Jacquinot, P.

P. Jacquinot, B. Roizen-Dossier, Compt. Rend. Acad. Sci. (Paris) 256, 4384 (1963).

Korzhavin, A. N.

G. M. Gelfreyka, A. N. Korzhavin, Radio Eng. Electron. Phys. 13, 1025 (1968).

Lambert, L. B.

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

Mahan, A. I.

McLean, D. J.

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

D. J. McLean, Proc. Roy. Soc. A263, 545 (1961).

D. J. McLean, J. P. Wild, Aust. J. Phys. 14, 489 (1961).
[CrossRef]

Roizen-Dossier, B.

P. Jacquinot, B. Roizen-Dossier, Compt. Rend. Acad. Sci. (Paris) 256, 4384 (1963).

Stark, H.

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

Thrierr, J. C.

M. Cagnet, M. Frangon, J. C. Thrierr, Atlas of Optical Phenomena (Springer, Berlin, 1962).

Wild, J. P.

J. P. Wild, Proc. Roy. Soc. A286, 499 (1965).

D. J. McLean, J. P. Wild, Aust. J. Phys. 14, 489 (1961).
[CrossRef]

J. P. Wild, Proc. Roy. Soc. A262, 84 (1961).

J. P. Wild, CSIRO, Division of Radiophysics, Sydney, Australia (private communication).

Aust. J. Phys.

D. J. McLean, J. P. Wild, Aust. J. Phys. 14, 489 (1961).
[CrossRef]

Compt. Rend. Acad. Sci. (Paris)

P. Jacquinot, B. Roizen-Dossier, Compt. Rend. Acad. Sci. (Paris) 256, 4384 (1963).

J. Opt. Soc. Am.

Proc. Inst. Radio Electron. Eng. Aust.

D. J. McLean, L. B. Lambert, M. Arm, H. Stark, Proc. Inst. Radio Electron. Eng. Aust. 28, 375 (1967).

J. P. Wild, Ed., Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).

N. Fourikis, Proc. Inst. Radio Electron. Eng. Aust. 28, 315 (1967).

Proc. Roy. Soc.

J. P. Wild, Proc. Roy. Soc. A286, 499 (1965).

D. J. McLean, Proc. Roy. Soc. A263, 545 (1961).

J. P. Wild, Proc. Roy. Soc. A262, 84 (1961).

Radio Eng. Electron. Phys.

G. M. Gelfreyka, A. N. Korzhavin, Radio Eng. Electron. Phys. 13, 1025 (1968).

Other

J. P. Wild, CSIRO, Division of Radiophysics, Sydney, Australia (private communication).

On a photograph like Fig. 2, a J02 field and a J0 field would have a similar appearance, but the bright rings appear twice as numerous on the J02 pattern of the same linear scale.

L. J. Cutrona, Optical and Electro-optical Information Processing, J. T. Tippet, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburg, Eds. (MIT Press, Cambridge, 1965), p. 83.

For reasons of economy the branching network used here is restricted in the number of its outputs and ray paths (4608). It is technically feasible to build a branching network with a large number of outputs to make it more nearly comparable to a lens. A branching network need never suffer from coma, spherical aberration, etc.

M. Cagnet, M. Frangon, J. C. Thrierr, Atlas of Optical Phenomena (Springer, Berlin, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The aperture showing the positions of the ninety-six equally spaced openings or channel inputs. (The filled circles are numbered for reference.)

Fig. 2
Fig. 2

Fraunhofer diffraction pattern obtained by passing a collimated beam of laser light through the ninety-six openings in an aperture of the form shown in Fig. 1 and focusing the emergent beams on to a screen. (The photograph was taken by D. J. McLean and It. N. Smart.)

Fig. 3
Fig. 3

Simplified plan of the imaging system showing how the local source of 80-MHz signals is connected in place of the radio-heliograph aerials to produce the diffraction patterns.

Fig. 4
Fig. 4

The 2880-point picture format. The field is scanned in a westerly direction simultaneously by forty-eight beams along a north–south line.

Fig. 5
Fig. 5

Complex patterns obtained with the phase advanced in channels adjacent to solid arcs. In this and the following figures, the number of elements and their positions are indicated by the number in the circle and the larger dots, respectively. Pattern a is not apodized, the others are.

Fig. 6
Fig. 6

Patterns a to e formed without apodization. The left-hand side of f shows an artificially produced moiré pattern formed by superimposing the grid (right-hand side) over part of Fig. 2; compare with Figs. 11(e) and 9(c).

Fig. 7
Fig. 7

Interference between two channels. In this and the following figures all patterns are apodized (see text).

Fig. 8
Fig. 8

Channels equally spaced around the circle. For e the intensity has been increased considerably, overexposing the brighter parts of the image, to show the weak inner responses.

Fig. 9
Fig. 9

Special groupings of channels.

Fig. 10
Fig. 10

Contrasting patterns formed by similar numbers of channels grouped in different ways.

Fig. 11
Fig. 11

Progressively opening the aperture from forty channels to ninety-six channels.

Fig. 12
Fig. 12

Computer-plotted contours for thirty-two channels. Adjacent contours have a brightness ratio of √2:1; compare with Fig. 8(e).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( r , ϕ ) = J 0 ( 2 π a r ) - g exp ( i 2 π a r cos ϕ ) 2 = J 0 2 ( 2 π a r ) - 2 g J 0 ( 2 π a r ) cos ( 2 π a y ) + g 2 ,

Metrics