Abstract

Four different methods for storing a three-dimensional image are examined. The efficiency of each method, expressed in terms of the space–bandwidth product of the stored data, is calculated.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
    [CrossRef]
  2. See, for example, C. B. Burkhardt, J. Opt. Soc. Am. 58, 71 (1968) for a recent treatment of this rather old technique.
    [CrossRef]
  3. A. C. Traub, Appl. Opt. 6, 1085 (1967).
    [CrossRef] [PubMed]
  4. E. G. Rawson, Appl. Opt. 7, 1505 (1968).
    [CrossRef] [PubMed]
  5. M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).
  6. M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
    [CrossRef]
  7. See A. Macovski, J. Opt. Soc. Am. 60, 21 (1970) for an extended discussion of holographic data storage requirements.
    [CrossRef]

1970 (2)

1969 (1)

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

1968 (2)

1967 (1)

1965 (1)

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Berry, D. H.

M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
[CrossRef]

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

Burkhardt, C. B.

King, M. C.

M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
[CrossRef]

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

Macovski, A.

Rawson, E. G.

Traub, A. C.

Winthrop, J. T.

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Worthington, C. R.

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic model for analysis. The distance d is from the aperture plane to the midpoint of the object.

Fig. 2
Fig. 2

Diagram for determining the number of data-collecting positions in multiple photography.

Fig. 3
Fig. 3

Method of integral photography.

Fig. 4
Fig. 4

Graph of Eqs. (15)(17) for σ = 1.

Fig. 5
Fig. 5

Graph of Eqs. (15)(17) for σ = 0.1.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d 1 A ,             d 1 D ,             d 1 L .
W = 2 sin 1 2 θ / λ L / λ d ,
( SW ) H = L A / λ d .
Δ ( x ) = ( λ d / l ) [ ( d + D ) / D ] .
n 1 = [ ( A - l ) / Δ x ] + 1 ,
n 1 = { ( A - l ) l / λ d [ 1 + ( d / D ) ] } + 1.
n 2 = ( D / λ ) ( l / d ) 2 .
n 3 = L l / λ d .
( SW ) M = n 1 n 2 n 3 = ( { ( A - l ) l / λ d [ 1 + ( d / D ) ] } + 1 ) × [ ( D / λ ) ( l / d ) 2 ] ( L l / λ d ) .
( SW ) I = L A / λ d .
( SW ) S = ( L l / λ d ) [ ( D / λ ) ( l 2 / d 2 ) ] = L D / λ 2 ( l / d ) 3 .
σ = l / A ,
ρ = ( D / λ ) ( A / d ) 2 = D / Δ r ,
Δ r = λ ( d / A ) 2 ,
β H = β I = ( SW ) H / ( SW ) S = 1 / ρ σ 3 .
β M = ( SW ) M / ( SW ) S = ρ σ ( 1 - σ ) + 1.
β S = 1.

Metrics