Abstract

Following the massive 1883 Krakatoa volcanic eruption, a new atmospheric optical phenomeon was identified by Rev. S. E. Bishop. This inconspicuous one-ringed corona, or aureole, was immediately linked to the global spread of volcanic debris injected into the stratosphere, but little refinement in the mechanisms responsible for Bishop's ring has since been made. On the basis of our combined studies of sulfuric acid droplet-freezing theory and polarization (0.694-μm) lidar measurements of Bishop's ring aerosols from the June 1991 Mt. Pinatubo eruption that show average linear depolarization ratios of ∼0.05, it appears that this solar diffraction phenomenon is caused by accumulations of nonspherical sulfuric acid tetrahydrate (SAT) particles. The diffraction-theory aureole-derived SAT particle radius of ∼0.8 μm is consistent with the freezing of the large mode of volcanic acid droplets created by coagulation, which, according to theory, is necessary for concentrating a sufficient insoluble mass to promote heterogeneous drop freezing at temperatures below approximately —65°C.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of absorbing particles on coronas and glories

Michael Vollmer
Appl. Opt. 44(27) 5658-5666 (2005)

Simulating coronas in color

Stanley D. Gedzelman and James A. Lock
Appl. Opt. 42(3) 497-504 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription