Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quadratic behavior of fiber Bragg grating temperature coefficients

Not Accessible

Your library or personal account may give you access

Abstract

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers

Da-Peng Zhou, Li Wei, Wing-Ki Liu, Yu Liu, and John W. Y. Lit
Appl. Opt. 47(10) 1668-1672 (2008)

Absolute strain measurements made with fiber Bragg grating sensors

In C. Song, Sun K. Lee, Sung H. Jeong, and Byeong H. Lee
Appl. Opt. 43(6) 1337-1341 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved