Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Forward scattering of a Gaussian beam by a nonabsorbing sphere

Not Accessible

Your library or personal account may give you access

Abstract

The forward scattering of a Gaussian laser beam by a spherical particle located along the beam axis is analyzed with the generalized Lorenz–Mie theory (GLMT) and with diffraction theory. Forward-scattering and near-forward-scattering profiles from electrodynamically levitated droplets, 51.6 μm in diameter, are also presented and compared with GLMT-based predictions. The total intensity in the forward direction, formed by the superposition of the incident and the scattered fields, is found to correlate with the particle-extinction cross section, the particle diameter, and the beam width. Based on comparison with the GLMT, the diffraction solution is accurate when beam widths that are approximately greater than or equal to the particle diameter are considered and when large particles that have an extinction efficiency near the asymptotic value of 2 are considered. However, diffraction fails to describe the forward intensity for more tightly focused beams. The experimental observations, which are in good agreement with GLMT-based predictions, reveal that the total intensity profile about the forward direction is quite sensitive to particle axial position within a Gaussian beam. These finite beam effects are significant when the ratio of the beam to the particle diameter is less than approximately 5:1. For larger beam-to-particle-diameter ratios, the total field in the forward direction is dominated by the incident beam.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Forward scattered light intensities by a sphere located anywhere in a Gaussian beam

Jean-Philippe Chevaillier, Jean Fabre, and Patrice Hamelin
Appl. Opt. 25(7) 1222-1225 (1986)

Debye series for Gaussian beam scattering by a multilayered sphere

Renxian Li, Xiang'e Han, Lijuan Shi, Kuan Fang Ren, and Huifen Jiang
Appl. Opt. 46(21) 4804-4812 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.