Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of hollow fibers for the transmission of infrared radiation

Not Accessible

Your library or personal account may give you access

Abstract

Plastic hollow fibers were made from plastic tubes covered on the internal wall with a metal layer (a-type) or a metal layer and dielectric layer on top of it (b-type). The CO2 laser energy transmission through the hollow fiber was measured as a function of the radius of curvature and the coupling lens (focal length at a constant fiber length). The yield of the transmission decreased in subtle curvatures (radius of curvature up to 100 cm) and remained almost constant as the curvature became sharper (down to radius of curvature of 13 cm). For the a-type fibers, the characteristics of attenuation depended on the focal length of the coupling lenses. The energy distribution at the output was measured and mapped. The experimental results showed that the maximum of the energy distribution is asymetrically positioned relative to the center and closer to the internal wall at a smaller bending radius. This was predicted in our previous theoretical calculation. The value of transmitted power attenuation was up to 1.4 dB/m. Maximum power at the output was 30 W, for a fiber of 50-cm length and a cross-sectional diameter of 1.9 mm. These types of hollow fiber have already been used in surgical experiments on dogs.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Infrared transmissive, hollow plastic waveguides with inner Ag–AgI coatings

Roshan George and James A. Harrington
Appl. Opt. 44(30) 6449-6455 (2005)

Gradually tapered hollow glass waveguides for the transmission of CO2 laser radiation

Daniel J. Gibson and James A. Harrington
Appl. Opt. 43(11) 2231-2235 (2004)

Experimental evaluation of a hollow glass fiber

A. Bornstein and N. Croitoru
Appl. Opt. 25(3) 355-358 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved