Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

10 kHz two-color OH PLIF thermometry using a single burst-mode OPO

Not Accessible

Your library or personal account may give you access

Abstract

10-kHz hydroxyl radical (OH) two-color planar laser-induced fluorescence (TC-PLIF) thermometry was demonstrated with a single burst-mode optical parametric oscillator (OPO) and a single camera. A fast, dual-wavelength switched seed laser enabled a high-energy, high-repetition-rate burst-mode laser to generate two 10-kHz pulse trains at wavelengths of ${\sim}{354.8}\;{\rm nm}$. The two pulse trains are colinear with 3 µs time interval between the pulse pairs. The injection-seeded OPO efficiently converts the burst-mode laser output to 285.62 and 285.67 nm to excite the ${Q}_2({12})$ and ${P}_1({8})$ OH transitions. PLIF images were collected from each of the two excitation transitions, and intensity ratios from the images were used to determine local temperatures. The development of fast, dual-wavelength switching, burst-mode OPO technology significantly reduces the experimental complexity of the high-speed TC-PLIF thermometry and simplifies its implementation in harsh combustion and flow test facilities.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Single camera 20 kHz two-color formaldehyde PLIF thermometry using a dual-wavelength-switching burst mode laser

Xunchen Liu, Yayao Wang, Zhen Wang, and Fei Qi
Opt. Lett. 46(20) 5149-5152 (2021)

10 kHz 2D thermometry in turbulent reacting flows using two-color OH planar laser-induced fluorescence

Paul S. Hsu, Naibo Jiang, Daniel Lauriola, Stephen W. Grib, Stephen A. Schumaker, Andrew W. Caswell, and Sukesh Roy
Appl. Opt. 60(15) C1-C7 (2021)

Burst-mode 100 kHz N2 ps-CARS flame thermometry with concurrent nonresonant background referencing

Daniel K. Lauriola, Paul S. Hsu, Naibo Jiang, Mikhail N. Slipchenko, Terrence R. Meyer, and Sukesh Roy
Opt. Lett. 46(21) 5489-5492 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.