Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals

Not Accessible

Your library or personal account may give you access

Abstract

We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a “Zak”-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals

Lei Wang, Wei Cai, Mengli Bie, Xinzheng Zhang, and Jingjun Xu
Opt. Express 26(22) 28963-28975 (2018)

Tamm plasmon-polaritons in a metal coated porous silicon photonic crystal

Alexandre Juneau-Fecteau and Luc G. Fréchette
Opt. Mater. Express 8(9) 2774-2781 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved