Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers

Not Accessible

Your library or personal account may give you access

Abstract

For several years, scientific, industrial, and biological fields have benefited from knowledge of phase information, which allows for the revealing of hidden features of various objects. An alternative to interferometry is single-beam phase retrieval techniques that are based on the transport of intensity equation, which describes the relation between the axial derivative of the intensity and the phase distribution for a given plane in the Fresnel region. The estimation of the axial intensity derivative is obtained from a series of intensity measurements, where the accuracy is subject to an optimum separation between the measurement planes depending on the number of planes, the level of noise, and the actual object phase distribution. In this Letter, a quantitative analysis of the error in estimated axial derivative is carried out and a model is reported that describes the interdependence between these parameters. The results of this work allow for estimation of the optimum separation between measurement planes with minimal error in the axial derivative.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimum plane selection for transport-of-intensity-equation-based solvers

J. Martinez-Carranza, K. Falaggis, and T. Kozacki
Appl. Opt. 53(30) 7050-7058 (2014)

Multi-filter transport of intensity equation solver with equalized noise sensitivity

J. Martinez-Carranza, K. Falaggis, and T. Kozacki
Opt. Express 23(18) 23092-23107 (2015)

Application of transport-of-intensity equation in fringe analysis

Javad Amiri, Ahmad Darudi, Siamak Khademi, and Peyman Soltani
Opt. Lett. 39(10) 2864-2867 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.