Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Arbitrary nonparaxial accelerating periodic beams and spherical shaping of light

Not Accessible

Your library or personal account may give you access

Abstract

We report the observation of arbitrary accelerating beams (ABs) designed using a nonparaxial description of optical caustics. We use a spatial light modulator-based setup and techniques of Fourier optics to generate circular and Weber beams subtending over 95 deg of arc. Applying a complementary binary mask also allows the generation of periodic ABs taking the forms of snake-like trajectories, and the application of a rotation to the caustic allows the first experimental synthesis of optical ABs upon the surface of a sphere in three dimensions.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Sending femtosecond pulses in circles: highly nonparaxial accelerating beams

F. Courvoisier, A. Mathis, L. Froehly, R. Giust, L. Furfaro, P. A. Lacourt, M. Jacquot, and J. M. Dudley
Opt. Lett. 37(10) 1736-1738 (2012)

Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories

Juanying Zhao, Peng Zhang, Dongmei Deng, Jingjiao Liu, Yuanmei Gao, Ioannis D. Chremmos, Nikolaos K. Efremidis, Demetrios N. Christodoulides, and Zhigang Chen
Opt. Lett. 38(4) 498-500 (2013)

Spherical fields as nonparaxial accelerating waves

Miguel A. Alonso and Miguel A. Bandres
Opt. Lett. 37(24) 5175-5177 (2012)

Supplementary Material (1)

Media 1: AVI (1257 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.