Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermally induced mode coupling in rare-earth doped fiber amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical analysis of mode instability in high-power fiber amplifiers

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard
Opt. Express 21(2) 1944-1971 (2013)

Coupled solitons in rare-earth doped two-mode fiber

T. N. Dey, S. Dutta Gupta, and G. S. Agarwal
Opt. Express 16(22) 17441-17450 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.