Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photon echo without a free induction decay in a double-Λ system

Not Accessible

Your library or personal account may give you access

Abstract

We have characterized a novel photon-echo pulse sequence for a double-Λ-type energy level system where the input and rephasing transitions are different from the applied π pulses. We show that, despite having imperfect π-pulses associated with large coherent emission due to free induction decay (FID), the noise added in the echo mode is only 0.2±0.1 photons per shot, compared to 4×104 photons in the FID modes. Using this echo pulse sequence in the “rephased amplified spontaneous emission” (RASE) scheme [Phys. Rev. A 81, 012301 (2010)] will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr3+:Y2SiO5 crystal.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-photon free-induction decay with electromagnetically induced transparency

J. F. Chen, Weixin Lu, Shuyuan Wang, M. M. T. Loy, G. K. L. Wong, and Shengwang Du
Opt. Lett. 35(11) 1923-1925 (2010)

Analysis of optical locking applied for rephasing halt in photon echoes

Byoung Seung Ham
J. Opt. Soc. Am. B 28(4) 775-779 (2011)

Two-photon free-induction decay

M. F. Marshman, P. M. Farrell, W. R. MacGillivray, and M. C. Standage
J. Opt. Soc. Am. B 3(4) 607-613 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved