Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam

Not Accessible

Your library or personal account may give you access

Abstract

We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards–Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams

Alexander Normatov, Boris Spektor, Yehuda Leviatan, and Joseph Shamir
Opt. Express 19(9) 8506-8513 (2011)

Near-field coupling of metal nanoparticles under tightly focused illumination

Jordi Sancho-Parramon
Opt. Lett. 36(17) 3527-3529 (2011)

Plasmon spectra of nanospheres under a tightly focused beam

Nassiredin M. Mojarad, Vahid Sandoghdar, and Mario Agio
J. Opt. Soc. Am. B 25(4) 651-658 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved