Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and graphene

Not Accessible

Your library or personal account may give you access

Abstract

We numerically demonstrate a switchable metamaterial absorber with two states (i.e., ultra-broadband and narrowband) in the terahertz region. Such switchable functionalities are accomplished by using a simple absorption system consisting of a hybrid metamaterial with vanadium dioxide (${{\rm{VO}}_2}$) and graphene. Theoretical calculations show that when ${{\rm{VO}}_2}$ is in the metal state, the absorption system without a graphene ring can act as a broadband absorber. For the broadband absorber, the absorption bandwidth of 5.05 THz (i.e., 93%) can be obtained under the condition of over 90% absorption rate, covering a frequency range of 2.91–7.96 THz. Meanwhile, the absorber exhibits tunable characteristics, whose absorption rate can be continuously adjusted from 1% to 99% by controlling the conductivity of ${{\rm{VO}}_2}$ from ${{2}} \times {{1}}{{{0}}^2}$ to ${{2}} \times {{1}}{{{0}}^5}\;{\rm{S}}/{\rm{m}}$. It is polarization-insensitive with a large angle tolerance in both transverse electric and transverse magnetic waves. Multiple interference theory is used to analyze the mechanism of the broadband absorber, and the theoretical results are in good agreement with simulations. When the ${{\rm{VO}}_2}$ is changed to the insulator state, the absorber system with a graphene ring can be switched to a narrowband absorber. This work will have great potential applications in the terahertz regime, such as tunable broadband absorbers, dynamic sensing, cloaking, and photodetectors.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamically switchable multifunctional terahertz absorber based on graphene and vanadium dioxide hybrid metamaterials

Yujiao Wen, Yunping Qi, Li Wang, Zihao Zhou, Haowen Chen, Shiyu Zhao, and Xiangxian Wang
J. Opt. Soc. Am. B 40(3) 509-515 (2023)

Dynamically tunable multifunctional terahertz absorber based on hybrid vanadium dioxide and graphene metamaterials

Jing Zhang, Jiejun Wang, Libo Yuan, and Houquan Liu
Appl. Opt. 63(5) 1385-1393 (2024)

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.