Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficiently modeling the noise performance of short-pulse lasers with a computational implementation of dynamical methods

Abstract

Lowering the output noise of short-pulse lasers has been a long-standing effort for decades. Modeling the noise performance plays a crucial role in isolating the noise sources and reducing them. Modeling to date has either used analytical or semianalytical implementation of dynamical methods or Monte Carlo simulations. The former approach is too simplified to accurately assess the noise performance in real laser systems, while the latter approach is too computationally slow to optimize the performance as parameters vary over a wide range. Here, we describe a computational implementation of dynamical methods that allows us to determine the noise performance of a passively mode-locked laser within minutes on a desktop computer and is faster than Monte Carlo methods by a factor on the order of 103. We apply this method to characterize a laser that is locked using a fast saturable absorber—for example, a fiber-based nonlinear polarization rotation device—and a laser that is locked using a slow saturable absorber—for example, a semiconductor saturable absorbing mirror.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Boundary tracking algorithms for determining the stability of mode-locked pulses

Shaokang Wang, Andrew Docherty, Brian S. Marks, and Curtis R. Menyuk
J. Opt. Soc. Am. B 31(11) 2914-2930 (2014)

Nonlinear stabilization of high-energy and ultrashort pulses in passively modelocked lasers

Shaokang Wang, Brian S. Marks, and Curtis R. Menyuk
J. Opt. Soc. Am. B 33(12) 2596-2601 (2016)

Comparison of numerical methods for modeling laser mode locking with saturable gain

Shaokang Wang, Andrew Docherty, Brian S. Marks, and Curtis R. Menyuk
J. Opt. Soc. Am. B 30(11) 3064-3074 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved