Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fundamental limits on the electro-optic device figure of merit

Abstract

Device figures of merit are commonly employed to assess bulk material properties for a particular device class, yet these properties ultimately originate in the linear and nonlinear susceptibilities of the material, which are not independent of each other. In this work, we calculate the electro-optic device figure of merit based on the half-wave voltage and linear loss, which is important for phase modulators and serves as the simplest example of the approach. This figure of merit is then related back to the microscopic properties in the context of a dye-doped polymer, and its fundamental limits are obtained to provide a target. Surprisingly, the largest figure of merit is not always associated with a large nonlinear optical response, the quantity that is most often the focus of optimization. An important lesson for materials design is that the figure of merit alone should be optimized. The best device materials can have low nonlinearity provided that the loss is low, or near resonance high loss may be desirable because it is accompanied by a resonantly enhanced, ultralarge nonlinear response, so device lengths are short. Our work shows which frequency range of operation is most promising for optimizing the material figure of merit for electro-optic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Path to ultralarge nonlinear-optical susceptibilities

Mark G. Kuzyk
J. Opt. Soc. Am. B 33(12) E150-E159 (2016)

Applying universal scaling laws to identify the best molecular design paradigms for third-order nonlinear optics

Javier Perez-Moreno, Shoresh Shafei, and Mark G. Kuzyk
J. Opt. Soc. Am. B 33(12) E57-E65 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (81)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.