Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically investigate the nonlinear propagation of femtosecond pulses in liquid-core photonic crystal fibers filled with CS2. The effect of slow nonlinearity due to reorientational contribution of liquid molecules on broadband supercontinuum generation in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. To analyze the quality of the pulse, we perform the stability analysis and study coherence of supercontinuum pulse numerically. We show that the response of the slow nonlinearity not only enhances broadening of the pulse and changes the dynamics of the generated solitons, but also increases coherence of the pulse.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-octave supercontinuum generation in a water-filled photonic crystal fiber

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann
Opt. Express 18(6) 6230-6240 (2010)

Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell
J. Opt. Soc. Am. B 27(3) 592-598 (2010)

Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers

Xiaohong Hu, Yishan Wang, Wei Zhao, Zhi Yang, Wei Zhang, Cheng Li, and Hushan Wang
Appl. Opt. 49(26) 4984-4989 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved