Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiation forces on dielectric and absorbing particles studied via the finite-difference time- domain method

Not Accessible

Your library or personal account may give you access

Abstract

Using the three dimensional finite-difference time-domain (FDTD) method, we calculate the radiation force from an incident plane wave on both dielectric and absorbing particles in the Lorentz–Mie regime via the Maxwell stress tensor approach. We find that the radiation force changes with particle permittivity, and we categorize the force into three regions: increasing, fluctuating, and constant. We discuss how particle size, shape, orientation and absorption affect the radiation force. A nanoscale solar sail is proposed based on our calculation. A detailed understanding of the optical force of a plane wave on particles in the Lorentz–Mie regime is fundamental for designing nanoscale solar sail systems and optical traps from a set of interfering plane waves.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Transverse trapping forces of focused Gaussian beam on ellipsoidal particles

Shaohui Yan and Baoli Yao
J. Opt. Soc. Am. B 24(7) 1596-1602 (2007)

Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field

Tomasz M. Grzegorczyk, Brandon A. Kemp, and Jin Au Kong
J. Opt. Soc. Am. A 23(9) 2324-2330 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.