Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rough surface reconstruction at grazing angles by an iterated marching method

Not Accessible

Your library or personal account may give you access

Abstract

An iterated marching method is presented for the reconstruction of rough perfectly reflecting one-dimensional (1D) surfaces from scattered data arising from a scalar wave at grazing incidence. This is based on coupled integral equations adapted from an earlier approach using the parabolic equation, relating the scattered field at a plane to the unknown surface. Taking the flat surface as an initial guess, these are solved here using at most three iterations. The method is applied to scattered field data generated from the full Helmholtz equations. This approach improves stability and self-consistency. The reconstructed surface profiles are found to be in good agreement with the exact forms. The sensitivity with respect to random noise is also investigated, and the algorithm is found to exhibit a type of self-regularization.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach

Leung Tsang, Chi H. Chan, Kyung Pak, Haresh Sangani, Akira Ishimaru, and Phillip Phu
J. Opt. Soc. Am. A 11(2) 691-696 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.