Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

Not Accessible

Your library or personal account may give you access

Abstract

We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results presented in Correia and Teixeira [J. Opt. Soc. Am. A 31, 2763 (2014) [CrossRef]  ] to the closed-loop case with predictive controllers and generalize the analytical modeling of Rigaut et al. [Proc. SPIE 3353, 1038 (1998) [CrossRef]  ], Flicker [Technical Report (W. M. Keck Observatory, 2007)], and Jolissaint [J. Eur. Opt. Soc. 5, 10055 (2010) [CrossRef]  ]. We follow closely the developments of Ellerbroek [J. Opt. Soc. Am. A 22, 310 (2005) [CrossRef]  ] and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors while minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that 60nm rms error reduction can be achieved with the distributed Kalman filter embodying antialiasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few λ/D separations (15λ/D) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics

Paolo Massioni, Luc Gilles, and Brent Ellerbroek
J. Opt. Soc. Am. A 32(12) 2353-2364 (2015)

Off-axis point spread function reconstruction for single conjugate adaptive optics

Roland Wagner, Jenny Niebsch, and Ronny Ramlau
J. Opt. Soc. Am. A 40(7) 1382-1391 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (76)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved