Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing

Not Accessible

Your library or personal account may give you access

Abstract

Maximum storage capacity in a reflection-type holographic memory with three-dimensional speckle shift multiplexing is investigated numerically. An explicit expression of storage capacity is derived on the basis of interpage crosstalk noise. We fabricate a simulator to evaluate reflection-type holographic data storage by calculating wave propagation, recording a hologram, and reconstruction by scalar diffraction. We calculate the properties of the resultant diffraction efficiency, that is the noise, at the first null in the speckle-shift multiplexing. Numerical results indicate that the storage capacity is proportional to the numerical aperture to the fourth power and to the volume of the recording medium and is inversely proportional to the wavelength to the third power. Achievable storage capacity is discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording

Masato Miura, Osamu Matoba, Kouichi Nitta, and Takeaki Yoshimura
Appl. Opt. 46(9) 1460-1466 (2007)

Reflection-type holographic disk memory with random phase shift multiplexing

Osamu Matoba, Yuji Yokohama, Masato Miura, Kouichi Nitta, and Takeaki Yoshimura
Appl. Opt. 45(14) 3270-3274 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved