Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Contrast polarity and edge integration in achromatic color perception

Not Accessible

Your library or personal account may give you access

Abstract

Previous work has shown that the achromatic color of a target patch embedded in simple two-dimensional display depends not only on the luminance contrast between the target and its immediate surround but also on the contrasts of other nearby edges. Quantitative models have been proposed in which the target color is modeled as a spatially weighted sum of edge contrasts in which the target edge receives the largest weight. Rudd and Arrington [Vision Res. 41, 3649 (2001)] elaborated on this idea to include an additional mechanism whereby effects of individual color-inducing edges are “partially blocked” by edges lying along the path between the inducing edge and the target. We tested the blockage model in appearance matching experiments performed with disk-and-single-ring stimuli having all four possible combinations of inner and outer ring edge contrast polarities. Evidence was obtained for both “blockage” (attenuation) and “antiblockage” (amplification) of achromatic color induction signals, depending on the contrast polarities of the inner and outer ring edges. A neural model is proposed to account for our data on the basis of the contrast gain control occurring between cortical edge detector neurons.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Parabolic achromatic color matching functions: Dependence on incremental and decremental luminance

Michael E. Rudd, Osman Kavcar, and Michael A. Crognale
J. Opt. Soc. Am. A 40(3) A57-A64 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved