Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes

Not Accessible

Your library or personal account may give you access

Abstract

Generalized correlation filters are proposed to improve recognition of a linearly distorted object embedded in a nonoverlapping background when the input scene is degraded with a linear system and additive noise. Several performance criteria defined for the nonoverlapping signal model are used for the design of filters. The derived filters take into account information about an object to be recognized, disjoint background, noise, and linear degradations of the target and the input scene. Computer simulation results obtained with the proposed filters are discussed and compared with those of various correlation filters in terms of discrimination capability, location errors, and tolerance to input noise.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of filters to detect a noisy target in nonoverlapping background noise

Bahram Javidi and Jun Wang
J. Opt. Soc. Am. A 11(10) 2604-2612 (1994)

Accuracy of location measurement of a noisy target in a nonoverlapping background

Vitaly Kober and Juan Campos
J. Opt. Soc. Am. A 13(8) 1653-1666 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved