Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Amplitude-based height-reconstruction techniques for synthetic aperture ladar systems

Not Accessible

Your library or personal account may give you access

Abstract

We examine the performance of amplitude-based height-estimation techniques for use with airborne synthetic aperture ladar (SAL) sensors in generating three-dimensional reconstructions of ground targets. Such techniques lend themselves to implementation more readily than phase-based techniques and are also more tolerant to phase instabilities that might be associated with SAL systems. For pairwise amplitude-comparison monopulse processing, we present analyses of the expected height sensitivity and bias of SAL systems in terms of the system parameters. We verify this analysis with simulations, and we also provide an overview of other SAL phenomena that affect height-estimation accuracy. We then propose an array-based joint-processing approach that can be applied instead of pairwise monopulse processing. We show that the joint-processing approach represents the maximum-likelihood estimator for obtaining the target height, and we demonstrate that the proposed approach significantly reduces bias-induced errors.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques

Stephen Crouch and Zeb W. Barber
Opt. Express 20(22) 24237-24246 (2012)

Wave optics simulations of synthetic aperture ladar performance through turbulence

Bryce E. Schumm and Matthew P. Dierking
J. Opt. Soc. Am. A 34(10) 1888-1895 (2017)

Synthetic aperture ladar imaging demonstrations and information at very low return levels

Zeb W. Barber and Jason R. Dahl
Appl. Opt. 53(24) 5531-5537 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved