Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast maximum-likelihood image-restoration algorithms for three- dimensional fluorescence microscopy

Joanne Markham and José-Angel Conchello
J. Opt. Soc. Am. A 18(5) 1062-1071 (2001)

Depth-variant deconvolution of 3D widefield fluorescence microscopy using the penalized maximum likelihood estimation method

Jeongtae Kim, Suhyeon An, Sohyun Ahn, and Boyoung Kim
Opt. Express 21(23) 27668-27681 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved