Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Statistical–physical model for foliage clutter in ultra-wideband synthetic aperture radar images

Not Accessible

Your library or personal account may give you access

Abstract

Analyzing foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (SAR) images is a challenging problem owing to the noisy and impulsive nature of foliage clutter. Indeed, many target-detection algorithms for FOPEN SAR data are characterized by high false-alarm rates. In this work, a statistical–physical model for foliage clutter is proposed that explains the presence of outliers in the data and suggests the use of symmetric alpha-stable (SαS) distributions for accurate clutter modeling. Furthermore, with the use of general assumptions of the noise sources and propagation conditions, the proposed model relates the parameters of the SαS model to physical parameters such as the attenuation coefficient and foliage density.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Stability and sensitivity of topographic features for synthetic aperture radar target characterization

Reuven Meth and Rama Chellappa
J. Opt. Soc. Am. A 16(2) 396-413 (1999)

Segmentation of synthetic-aperture-radar complex data

E. Rignot and R. Chellappa
J. Opt. Soc. Am. A 8(9) 1499-1509 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved