Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of the Kerr-medium type on the wave’s reflection states at a nonlinear interface for different angles of incidence

Not Accessible

Your library or personal account may give you access

Abstract

An analysis of a monochromatic plane wave’s reflection at a nonlinear interface is presented that constitutes a generalization and an extension of previous studies on this subject. We examine the influence of self-focusing and self-defocusing Kerr media on total and partial reflection states. We consider the whole range of angles of incidence and four types of media interfaces. In our model we do not apply the slowly varying amplitude approximation, and we give analytical real positive nonoscillating solutions to the nonlinear differential wave equations in total and partial reflection cases. For each case we also derive relations between the amplitude reflectance and input intensity, which indicate that in some situations the wave’s behavior at a nonlinear interface is governed by the nonlinear critical and the nonlinear characteristic angles. It is pointed out that the reflection states change bistably. We show, for different angles of incidence, the ranges in which the effective permittivity of nonlinear media can be changed via the incident intensity.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-wave reflection at a nonlinear interface

Tomasz Wójcik and Barbara Rubinowicz
J. Opt. Soc. Am. B 15(7) 1856-1864 (1998)

Bistable nonspecular reflection at a nonlinear–linear local interface

Wojciech Nasalski
Opt. Lett. 23(6) 433-435 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (93)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.